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A Note From the Director 
In Fiscal Year (FY) 2024, the National Renewable Energy Laboratory (NREL) took a major 
leap forward with the completed full buildout of Kestrel, the U.S. Department of Energy's 
Ofce of Energy Efciency and Renewable Energy's newest high-performance computing 
(HPC) system. Kestrel is already supporting science across the portfolio, bringing roughly 44 
petafops of computing power, which is more than fve times the capacity of our previous 
supercomputer, Eagle. By delivering greater GPU capacity, Kestrel enables faster progress in 
artifcial intelligence (AI) and opens new avenues in energy research—from defning long-
term planning scenarios to accommodate a growing power system to material discovery 
to improving energy efciency in photovoltaics (PV). Across the portfolio, research is being 
accelerated by Kestrel’s impressive power. 

During FY 2024, 427 projects and more than 700 researchers used NREL’s HPC, supporting the 
Ofce of Energy Efciency and Renewable Energy across 13 funding areas. Through these 
collaborations, researchers produced more than 450 technical outputs, including 195 articles 
in peer-reviewed publications, pushing the boundaries of science and engineering. 

This year’s report features new sections spotlighting the expanding roles of AI and accelerated 
computing. We also introduce an early career section to celebrate the accomplishments of 
our up-and-coming researchers, whose pioneering work is shaping the future of energy. We 
hope you enjoy the new insights and discoveries highlighted in these pages. 

Ray Grout, 
Director, Computational Science Center 

Kris Munch, 
Laboratory Program Manager, Advanced Computing 
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CAPABILITIES 
AND PROJECTS 

AT A GLANCE 
Patent on Perovskite Materials for 
Efcient Hydrogen Production 
Kestrel supported development of a new patent describing a 
novel class of quinary metal oxide perovskite materials optimized 
for efcient hydrogen production using sunlight and water in a 
two-step thermochemical cycle. This innovation has the potential 
to signifcantly advance hydrogen technology, ofering a scalable 
pathway for energy generation. 

Early Career Award Winner Models 
Extreme Events in Complex Systems 
Early career funding supports enrichment of computer 
models of extreme events. 

Read more on page 11 



The National Renewable Energy Laboratory’s (NREL’s) 
high-performance computing (HPC) user facilities supported 

427 modeling and simulation projects in FY 2024, 
advancing the U.S. Department of Energy (DOE) 

mission across the spectrum of energy technologies 
and systems integration research. 

706 Total users 

88% HPC availability 

90% HPC utilization 

427 Modeling and 
simulation projects 

K E Y  P E R F O R M A N C E  I N D I C AT O R S  

M O D E L I N G  A N D  S I M U L AT I O N  P R O J E C T S  
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Kestrel Supercomputer 
Energizes Energy 
Research 
After more than 2 years of hard work, the Kestrel 
supercomputer buildout is complete, providing 44 
peak petafops of computing power focused on 
energy technologies and systems integration research. 
Built by Hewlett Packard Enterprise, the HPC system 
boasts more than fve times the computing power of 
the DOE Ofce of Energy Efciency and Renewable 
Energy's (EERE’s) previous supercomputer, Eagle. 

The work to install Kestrel in NREL’s Energy Systems 
Integration Facility HPC data center kicked of 
with the arrival of the frst phase of equipment— 
including CPUs and a 95-petabyte parallel fle 
storage system—in March 2023. In November 2023, 
the remainder of the CPUs landed Kestrel at #67 on 
the 62nd edition of the TOP500, an industry-standard 
list of the 500 most powerful computers in the world, 
showcasing 14.3 petafops of performance from 
Kestrel’s CPU capability alone. 

With the summer 2024 completion of the installation, 
Kestrel now has 132 GPU nodes—each hosting four 
NVIDIA H100 GPUs—added to the 2,314 existing CPU 
nodes. The GPUs are already in use by more than 100 
projects, elevating the work at EERE to new heights 
by enabling emerging artifcial intelligence (AI) and 
machine learning (ML) workfows. 

Now that Kestrel is fully complete, GPUs and all, 
researchers are plugging in and using Kestrel’s power 
to accelerate energy research, driving advancements 
in energy technologies and systems integration. 
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Situated Visualization 
of Photovoltaic 
Module Performance 
NREL has expanded the capabilities of 
the Insight Center by adding situated 
visualization, which overlays digital 
information onto physical objects or 
environments, enabling users to explore 
data in a way that is spatially mapped 
onto the physical world. For example, 
users can adjust the orientation of a 
physical solar photovoltaic (PV) module 
in the lab and immediately see real-
time performance changes visualized 
on the PV module itself. This interactive 
approach bridges the gap between 
abstract data and tangible systems, 
making it easier for analysts to grasp the 
relationship between environmental 
factors and system performance. 

This capability is especially useful for 
analyzing energy systems where real-
world variables, such as sunlight angle 
or shading, can signifcantly impact 
performance. And, by incorporating 
augmented reality and real-time feedback 
alongside the new situated visualization 
tools, the Insight Center now ofers more 
immersive and hands-on experiences for 
scientifc exploration and training. 



 
Tool Highlights 
Hydrogen 
Cost-Reduction 
Strategies for Large-
Scale Industrial Use 
To provide high-fdelity visualizations of 
hydrogen costs across the country, NREL 
researchers needed a platform with the 
capability to provide data for more than 50,000 
U.S. hybrid energy plant locations. The Hybrid 
Environment Resources and Operations (HERO) 
tool helped the team visualize the performance 
of a hybrid wind-solar plant with levelized 
cost of hydrogen to make suggestions for cost 
reduction strategies and specifcally identify 
locations with promising key attributes. 

HERO supports mission-driven research projects 
by providing a set of common web services 
and reusable software components to support 
advanced computational workfows across cloud 
and HPC. HERO maintains metadata for project 
workfows and stores data in both cloud data 
repositories as well as local on-premise data 
systems, enabling access to data via common 
APIs. The architecture of HERO enables engineers 
and researchers to develop and deploy their 
own HERO applications and leverage common 
HERO services, thus lowering the barriers to 
computational resources by making it easier 
and faster to build and use workfows. HERO is 
transforming energy research by revolutionizing 
scientifc workfows, discovery, and collaboration. 
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ARTIFICIAL INTELLIGENCE 
AND ACCELERATED 
COMPUTING 



 
Reducing Costs of 
Bioderived Products 
and Materials 
The Biochemical Process Modeling and Simulation project, 
supported by the DOE Bioenergy Technologies Ofce, 
deploys modeling and simulation tools at length scales 
ranging from atomic to reactor, with an overarching 
objective to streamline experimental and engineering 
eforts to reduce the cost of bioderived products and 
materials by addressing process bottlenecks. 

A major challenge in biochemical platforms is engineering 
microbes and their enzymes, which convert biomass 
to valuable products, to withstand harsh conditions 
such as high temperature, acidic pH levels, and high 
concentrations of products such as ethanol. NREL 
researchers are leveraging the GPUs on Kestrel to develop 
ML techniques to predict how enzymes can be modifed to 
increase their stability. In addition, the team is developing 
GPU-accelerated high-throughput molecular dynamics 
simulations to model the efects of harsh conditions for 
a large variety of proteins, which will also feed more data 
to train the ML models. In tandem, these approaches 
have the potential to greatly improve the efectiveness of 
enzyme engineering campaigns and ultimately increase the 
efciency of producing new fuels and chemicals. 
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Next-Generation AI for 
Complex Energy Systems 
Scientifc ML is becoming increasingly useful to replace or 
supplement models for computational physics problems; 
however, many ML approaches require a vast array of 
training data and can struggle with generalization and 
interpretability. As part of an NREL Laboratory Directed 
Research and Development project called AI Architectures 
for Reduced Order Modeling (AIROM), NREL scientists 
used diferentiable simulators and next-generation AI 
architectures to learn surrogate models for complex 
simulations. In particular, the team applied Fourier Neural 
Operator architectures to learn surrogates of large eddy 
simulations, setting the stage to enable AI versions of 
large-scale turbulence models to be used for industrial 
applications like wind farm design. 

Separately, the team used diferentiable simulators in an 
AI training loop to teach a multi-scale surrogate to better 
connect particle-scale and reactor-scale modeling of 
biomass pyrolysis. By using AI to connect these model 
scales, they drastically improved the reliability of pyrolysis 
yield simulations to better match experimental results with 
an extremely small number of training simulations. 
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Modeling Extreme Events in 
Complex Systems 
Motivated by the drastic impacts of extreme environmental 
events on human and natural systems, NREL computational 
scientist Julie Bessac, Ph.D., is pursuing work on 
developing novel statistical and ML models to advance the 
understanding and modeling of extreme events arising in 
complex systems. With her recent award funding under 
the DOE Ofce of Science’s 2023 Early Career Research 
Program, Bessac is working to correct or enrich computer 
models for environmental conditions that derive from 
classic physics-based models. Classic models omit details 
and may lead to misevaluated risks for systems and living 
populations susceptible to extreme environmental stressors. 
This knowledge gap around extremes results in inadequate 
response and increased exposure or cost. Using Kestrel, 
Bessac’s team demonstrated that a statistical treatment of 
classical super-resolution neural networks reveals fne-scale 
features of wind felds. As some models may understate the 
potential for environmental conditions, especially extreme 
events, updating models will enable leaders and people to 
prepare for current and future climate conditions.  
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Designing Advanced Catalysts 
With Boost From AI 
With funding from the DOE Ofce of Science’s Beyond-DFT 
Electrochemistry with Accelerated and Solvated Techniques (BEAST) 
project, NREL researchers and collaborators from Rensselaer Polytechnic 
Institute, Lawrence Berkeley National Laboratory, the University of 
Colorado Boulder, and the University of South Carolina are designing 
better catalysts for water electrolysis, fuel cells, and carbon dioxide 
reduction. The BEAST team, which is focused on high-fdelity simulation 
of electrocatalytic systems beyond standard density-functional theory 
(DFT) approaches, developed and paired new, GPU-accelerated 
algorithms with AI to achieve an unprecedented description of electronic 
structure in both speed and scale. Leveraging Kestrel, they performed 
high-fdelity, beyond-DFT random phase approximation calculations 
for a range of electrocatalysts and adsorbates, including previously 
unachievable calculations. Kestrel enabled the BEAST team to run both 
standard catalytic model sizes on 8 GPU nodes, up to complex models 
requiring 64 GPU nodes. The BEAST team will utilize this scaling of the 
random phase approximation method on Kestrel GPU nodes to generate 
corrections to their DFT calculations in BEAST Database (beastdb.nrel. 
gov), the recently published database of electrocatalytic calculations. 

In parallel, the team developed an AI approach that combines graph 
neural networks and an efcient description of electronic states to 
predict high-fdelity electronic structure of electrocatalysts at the cost 
of lower-fdelity DFT calculations. This graph neural network approach 
greatly improves predictions for heterogeneous catalytic systems due 
to its ability to capture local active site structure. The ability to simulate 
complex models of catalytic systems and build large databases of 
catalysts with high fdelity will advance understanding of the factors that 
determine electrocatalytic performance. 
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Multiscale, Multiphysics 
Simulation Tool 
Optimizes Battery and 
Device Performance 
All-solid-state batteries are one of the most 
promising energy storage technologies with 
improved safety and energy density, though 
stability issues have hindered deployment in a 
wide range of applications. Understanding chemo-
mechanical degradation at interfaces that impede 
performance and promote failure, as well as how 
these can be controlled at multiple length scales, is 
key to realizing targeted design and optimization 
of all-solid-state battery architecture. Funded by 
the DOE Vehicle Technologies Ofce and led by 
Lawrence Livermore National Laboratory, the team 
applied multiscale, multiphysics simulation tools 
to probe the mechanisms of failure at interfaces, 
including changes in chemistry and mechanical 
properties. Aided by Kestrel’s GPU acceleration 
ability, the team developed machine-learned 
surrogate models to enable high-fdelity, large-
scale molecular dynamics simulations of thousands 
of atoms with quantum-level accuracy, which were 
used to directly simulate interfacial evolution and 
degradation. They also incorporated these results 
within larger-scale models of composite materials 
to probe how stresses evolve during simulated 
battery cycling. Overall, these multiscale modeling 
tools are a frst step toward enabling rational 
design of interfaces and optimization of device 
performance of all-solid-state batteries. 
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 INTEGRATED ENERGY 
SYSTEMS 



 

Total Solar Eclipse 
On April 8, 2024, NREL researchers transformed the 
Insight Center into an eclipse command center to 
monitor and analyze the real-time impacts of the total 
solar eclipse on the nation’s electrical grid. They displayed 
real-time data feeds from multiple independent system 
operators, providing a dynamic view of solar generation 
as it rapidly decreased and recovered across the United 
States. Visualizations showcased high-resolution, detailed 
animations that tracked rooftop and utility-scale solar 
installations in regions such as California, Texas, and 
New York. 

Visualization experts facilitated precalculated impact 
assessments, developed prior to the eclipse, to anticipate 
how diferent regions would respond. These high-resolution 
visualizations—based on detailed models integrating 
weather, solar, and grid data—allowed researchers to 
explore the eclipse’s potential efects on interconnections, 
independent system operators, and balancing authorities 
across various spatial scales—from individual plants to 
larger grid sectors. Visualizing this data with such precision 
proved invaluable for assessing the solar eclipse’s impact, 
as it provided a clear visual representation of the efects on 
the grid. By blending real-time monitoring with high-fdelity 
pre-event modeling, the eclipse command center allowed 
researchers to fully understand the complex interactions 
between solar generation and grid operations, ensuring 
that future visualization tools ofer the granularity needed to 
inform grid management and resilience eforts. 
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ARIES and HPC Scale 
Home Simulations for 
Grid Flexibility 
Portland General Electric, with funding from the 
DOE Building Technologies Ofce, is working 
with NREL researchers to investigate advanced 
grid fexibility when controlling air-source heat 
pumps, water heaters, battery energy storage, 
and electric vehicles at a whole-neighborhood 
scale. To evaluate these new grid controls, the 
team is studying a simulated neighborhood 
representing 4,000 homes within Portland 
General Electric’s service area. Researchers 
modeled the homes and developed a real-
time simulation environment on Kestrel, then 
used NREL-developed controls, also running on 
Kestrel, to manage the assets. These simulations 
enabled NREL to ensure that their community 
model is ready for integration with controls 
in the next phase of the project: the team will 
deploy a commercial distributed energy resource 
management system (DERMS) and interface 
it with Portland General Electric’s simulated 
neighborhood. The connection of commercial 
grid controls to simulations on the Advanced 
Research on Integrated Energy Systems 
(ARIES) platform using HPC will demonstrate 
how intelligent management of behind-the-
meter devices can amount to megawatts of grid 
fexibility. By interconnecting commercial grid 
controls to simulations on Kestrel running in real 
time, researchers can study the impact at scale, 
enabling the utility industry to leverage these 
new control technologies faster and with broader 
impact than has previously been possible. 
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National Transmission 
Planning Study Defnes 
Long-Term Planning 
Scenarios for a Growing 
Power System 
The U.S. transmission system needs upgrades and 
expansion to accommodate energy generation and 
loads, and to provide reliable, afordable power to 
consumers. The National Transmission Planning Study 
(NTPS), funded by the DOE Grid Deployment Ofce 
and in partnership with NREL and Pacifc Northwest 
National Laboratory, embarked on a multiyear 
quest to understand the changes needed to serve 
customers as the power sector evolves. NTPS seeks 
to identify transmission portfolios with broad-scale 
benefts to electric customers under a wide range of 
potential futures. NTPS also aims to inform planning 
processes for regional and interregional transmission 
and to identify interregional and national strategies 
to maintain grid reliability. New grid-scale planning 
tools and methods can assist industry with planning 
interregional transmission capacity needs. Using 
the Kestrel supercomputer, NTPS utilized, expanded, 
and created new and existing national transmission 
planning tools and models—the multi-model 
framework can help industry looking to understand 
transmission benefts and development options. 
NTPS also revealed that accelerating transmission 
deployment has the added beneft of reduced 
system costs. The six-chapter NTPS report is available 
from the Grid Deployment Ofce. 
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Deep Reinforcement 
Learning Algorithm 
Stabilizes Voltage 
Control 
Increasing energy generated through solar PV 
into grid distribution networks may adversely 
afect and tax grid operations while presenting 
issues in maintaining voltage stability. To 
address the challenges that traditional model-
based control algorithms may face in this case, 
researchers from NREL and the University of 
Connecticut—with funding from the DOE 
Solar Energy Technologies Ofce—used Kestrel 
to develop a visibility-enhanced, model-free 
deep reinforcement learning algorithm. The 
algorithm uses surrogate models for efcient 
training, improving voltage regulation with 
minimal curtailment in distribution systems, 
and demonstrating scalability and real-time 
performance in real-world scenarios. The 
model-free approach allows robust regulation 
of voltage with limited system knowledge, 
enabling scalable, practical integration of  
distributed energy generation into power grids 
while accounting for grid stability. The team 
assessed the feasibility and efectiveness of 
the algorithm by testing deep reinforcement 
learning across varying degrees of observable 
data and training environments. This method 
paves the way for more accessible real-world 
applications of deep reinforcement learning and 
showcasing its potential to other areas of power 
system control. 
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Enhancing Wind Farm 
Design and Analysis Tools 
The Holistic, Multi-Fidelity Wind Farm Design 
Optimization and Model Coordination project is 
funded by the DOE Wind Energy Technologies Ofce 
to advance cutting-edge multi-fdelity and systems-
level methodologies for wind energy systems. In 
partnership with Sandia National Laboratories, 
Purdue University, Stanford University, and Brigham 
Young University, the project aims to enhance the 
interoperability and application of low- to mid-fdelity 
engineering design and analysis tools. In FY 2024, 
the team designed a 22-MW reference ofshore wind 
turbine, including comprehensive design studies 
for the semisubmersible foater supporting the new 
turbine. Using aeroelastic tools from around the 
world—including NREL’s OpenFAST wind turbine 
simulation tool—the team performed verifcation 
studies to validate the reference turbine. The team 
has demonstrated new design methodologies and 
innovation pathways using Kestrel for numerical 
simulations. By better coordinating the portfolio of 
numerical tools, the impact of research spans across 
models and fdelities, promoting broader usage 
in both research and industry settings. Beyond 
the new reference turbine, studies focused on the 
turbine-plant coupling and improving wind plant 
performance through site-customized turbine 
designs and control. Plant studies focused on the 
minimization of land-usage of wind farms and 
environmental impact. 
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Unlocking Better Batteries: 
How Tiny Atomic Patterns 
Boost Performance 
The Cation-Disordered Rocksalt Cathode Materials Consortium 
is commercializing a new family of battery cathode materials: 
disordered rock salt (DRX). These new materials could provide 
higher energy density than lithium-ion battery cathodes 
composed of cobalt and nickel, metals with critically dwindling 
supply. Lithium batteries made with DRX cathodes may 
address supply concerns—and resulting higher prices—for 
the vehicle industry. Scientists found that small regions of 
structured order, known as “short-range order,” play a crucial 
role in determining how well lithium ions move within the 
material. Using powerful imaging and simulation techniques, 
they identifed three basic structural types—tetrahedrons, 
octahedrons, and cubes—within these patterns. These 
structures form pathways for lithium ions to travel, directly 
impacting the material’s electrochemical performance. 

With funding and support from the DOE Material Science and 
Engineering division in the Basic Energy Sciences program, 
researchers from NREL, Boise State University, and Florida State 
University simulated design of a new framework to map out 
the atomic-scale patterns of short-range order in real space, 
discovering that short-range order patterns correlate with lithium 
percolation channels and afect lithium transport properties. 
The Kestrel-enabled framework is based on the combination of 
aberration-corrected scanning transmission electron microscopy, 
electron difraction, cluster-expansion Monte Carlo simulations, 
and simulations of scanning transmission electron microscopy 
imaging and electron difraction. In addition to mapping 
short-range order atomic structures and matching them to 
lithium-transport properties, the researchers demonstrated 
that short-range order features can be manipulated, leading to 
the modifcation of the electrochemical performance of DRX 
cathodes. This discovery bridges a critical gap in understanding 
how local atomic structures afect battery performance and 
provides a roadmap for designing more efcient, next-generation 
energy storage solutions. 
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Screening Low-Cost, High-
Performance Electrocatalysts 
and Fuel Cell Materials 
Low-cost electrocatalysis is a pathway to the 
commercialization of hydrogen technology, but 
electrocatalysts have been expensive and scarce. To 
identify potential electrocatalysts as alternatives to noble-
metal-based catalysts, researchers developed a method 
for screening potential electrocatalysts for the hydrogen 
evolution reaction and the oxygen reduction reaction. 
Noble metals are currently the best candidates for these 
reactions, so researchers aim to reduce the content of noble 
metals in catalysts while improving catalytic performance. 
Using Kestrel to perform high-throughput DFT calculations, 
researchers pinpointed promising candidates of low-cost, 
high-performance electrocatalysts and potential fuel cell 
materials. They additionally investigated carbon-based 
single-atom catalysts as alternatives to noble-metal-
based catalysts for the hydrogen evolution reaction and 
oxygen reduction reaction. A new dataset composed of 
transition metals suitable for single-atom catalysts will 
establish physical and accessible design principles for 
experimentalists to use. The DOE Hydrogen and Fuel Cell 
Technologies Ofce’s ElectroCat Consortium funded the 
work, performed by researchers from Florida State University 
and the University of South Carolina. 
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Better Understanding 
of Silicon Solar Cell 
Physics Can Improve 
Cell Efciency 
Silicon-based solar cells are prone to 
degradation, which reduces cell efciency. 
Polycrystalline silicon on silicon oxide (poly-Si/ 
SiOx) passivating contact solar cells are one 
of the leading candidates for high-efciency, 
cost-efective, next-generation solar cells. The 
physics of the degradation of these tunnel 
oxide passivated contact (TOPCon) and 
polysilicon on oxide (POLO) cells are not fully 
understood. Researchers at the University 
of California, Davis developed a simulation 
platform, SolDeg, run on Kestrel to explore 
how microscopic dynamics over femtoseconds 
determines degradation on the timescale of 
decades. Adding hydrogen to the SiOx layer in 
low concentrations advantageously passivated 
the interface. This reduced recombination 
and thus improved cell performance. Above 
a critical concentration, however, excess 
hydrogen was found to generate pinholes 
that pierced the oxide layer. This dramatically 
increased recombination and degraded 
cell performance. This discovery of a sharp 
optimum in the hydrogen concentration is a 
powerful demonstration of how the SolDeg 
project can start on atomistic time and 
length scales, yet produce actionable 
predictions for macroscopic length and 
decades-long timescales. 
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Pathways for Enhanced Life Cycle 
Performance of Anodes in 
Lithium Metal Batteries 
All-solid-state lithium metal batteries can potentially achieve both high energy density 
and safety, thus having received great attention. However, all-solid-state lithium metal 
batteries still face two major challenges: lithium dendrite growth and high interface 
resistance. With funding from the DOE Vehicle Technologies Ofce, researchers from 
the University of Maryland ran the frst principal calculation and molecular dynamics 
simulations on Kestrel to establish a comprehensive criterion for efectively suppressing 
lithium dendrites. By utilizing simulations, the team predicted the structure and 
properties of various interfaces against lithium, which were then correlated with 
measured lithium dendrite-suppression capabilities. The simulation work conducted in 
this study plays a critical role in the design of solid electrolyte lithium batteries, enabling 
them to achieve both high energy density and long cycle life. 

New Alloy Coatings Protect 
Hydrogen Turbine Parts 
Current hydrogen turbine systems are often treated with MCrAlY (M is Ni, Co, or 
NiCo; Cromium, Aluminum, and Yttrium), but researchers see opportunities to 
enhance coatings’ abilities to protect the base coatings against degradation. In 
FY 2024, this project worked to protect critical components in hydrogen turbine 
systems by taking advantage of the intrinsic merits of alumina-forming high entropy 
alloy-based coatings for mitigating these degradation mechanisms and ofering 
superior oxidation and spallation resistance to the current state-of-the-art MCrAlY 
coatings. The team employed Kestrel and implemented an HPC-compatible model 
to screen new promising coating compositions with low coefcient of thermal 
expansion, high strength, and acceptable ductility to optimize their performance. 
With funding from the DOE Advanced Materials and Manufacturing Technologies 
Ofce, researchers from the National Energy Technology Laboratory worked to 
predict the thermal and mechanical properties of various alloys for potential use in 
alumina-forming, high entropy, alloy-based coatings. Modeling and validation of 
these alloys provided promising candidates that may help protect against hydrogen 
turbine system degradation. 
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Indoor Perovskite Cell 
Testing Mimics Outdoor 
Conditions To Predict 
Device Stability 
Metal halide perovskite solar cells (PSCs) present promising 
power conversion efciency, but new technologies must 
show reliability under real-world outdoor conditions 
to reach commercialization. Stress factors like heat and 
humidity coexist and contribute to degradation, so NREL 
researchers sought to create indoor testing protocols 
to predict outdoor impacts and to observe related 
degradation in PSCs. Using Kestrel, they employed a 
combination of simulation and experimental methods, 
building a positive-intrinsic-negative PSC stack—with 
power conversion efciencies of up to approximately 
25.5%—and showed that indoor accelerated stability tests 
can predict the outcomes of 6-month outdoor aging tests. 
High-temperature stability tests conducted under light 
illumination correlated well with outdoor operational cell 
testing, indicating that these are key stressors to account 
for to understand how PSCs operate in the outdoor 
environment. DFT calculations and electrochemical 
measurements showed that enhancing the ion-blocking 
properties of the self-assembled monolayer hole transport 
layer—the site of a critical instability mechanism in 
PSCs—is critical for improving device stability under 
high temperatures in the sun. Funding for the project 
was partially provided by the Center for Hybrid Organic– 
Inorganic Semiconductors for Energy, a DOE Ofce of 
Science Energy Frontier Research Center. 

Advanced Computing Annual Report 2024  | 25 



Simulations Detail Properties 
of Lithium-Excess Rock Salt 
for Energy-Efcient Batteries 
Lithium-ion batteries present the practical energy density 
needed to provide electric vehicles with a range and 
life cycle comparable to combustion-engine vehicles. 
The discovery of DRX materials provides high energy 
density in addition to a promising pathway to addressing 
resource constraints associated with cobalt and nickel, 
key components of traditional lithium-ion batteries. To 
support higher performance and lower-cost lithium-ion 
batteries for electric vehicles, researchers from Lawrence 
Berkeley National Laboratory and the University of 
California, Berkeley, with funding from the DOE Vehicle 
Technologies Ofce, used Kestrel and Swift—an HPC 
system dedicated to projects funded by the Vehicle 
Technologies Ofce—to study the electrochemical 
properties of DRX and partially disordered spinel-based 
cathodes. The researchers realized two milestones in FY 
2024: the synthesis of high-performance partially disordered 
spinel-based cathodes; and an advanced ML technique for 
predicting electrochemical behaviors of cathode materials. 
Simulation eforts are corroborated by experiments that 
show improved performance of disordered cathodes. 
Next, researchers will continue eforts to understand 
design handles for controlling the DRX-to-spinel ordering 
transitions and investigating synthesis routes that optimize 
such spinel-like partial order for better performance. 
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 Questaal Software 
Resolves Complex Physics, 
Helping Researchers Solve 
Complex Problems 
Questaal—a suite of electronic structure software designed 
to answer basic questions about chemical and solid-state 
systems at the atomic level—solves quantum physics 
equations using Feynman diagrams efciently, simplifying 
computationally intensive processes enough to make it 
tractable but still retaining high fdelity. In FY 2024, NREL 
researchers used Kestrel to investigate titanium diselenide 
(TiSe2)—thought to be a rare instance of an excitonic 
insulator—fnding that TiSe2 is not an excitonic insulator 
but a band insulator that appears when dynamical nuclear 
fuctuations are considered. Knowledge of the electronic 
structure is an essential prerequisite for investigating other 
properties of TiSe2 like its superconductivity. Questaal’s 
high fdelity, which can include excitonic efects, enables 
it to resolve many properties such as the optical bandgap 
in TiSe2, where prior theories have been inadequate. 
This showcases Questaal’s ability to answer key science 
questions in a wide range of studies of chemical and 
materials systems. In other FY 2024 projects, Questaal 
was used to investigate magnetic metals and their 
interfaces to explore the properties of LK-99 as a possible 
superconductor; explain many properties of excitons in 
recently discovered 2D ferromagnetics; investigate optical 
properties of carbon monoxide on a copper substrate 
(for catalysis); gain a basic understanding of the origin 
of the metal-insulator transition rare earth nickelates of 
interest for neuromorphic computing; explore processes 
in iron/magnesium oxide (Fe/MgO) tunnel junctions used 
in the electronics industry; and explain the core physical 
properties of YFe2Ge2, a superconductor that may support 
Majorana fermions. 
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First Macromolecular 
Model of Woody Plant Cell 
Walls Will Improve Biomass 
Conversion 
Deconstruction of plant cell walls is the frst step of 
the biomass conversion process, but deconstruction is 
expensive and energy-intensive due to the robust nanoscale 
architecture and strong adhesion between the constitutive 
biopolymers. Funded by the DOE Bioenergy Technologies 
Ofce, researchers deployed a multidisciplinary approach— 
including using solid-state nuclear magnetic resonance 
imaging to infer details about the structure—to defne 
the macromolecular arrangement of polymers in Populus 
wood before using Kestrel to develop molecular models of 
the lignocellulosic biopolymer assemblies. Lignocellulosic 
biomass holds great potential as a source for fuels, 
chemicals, and materials. The models helped researchers 
identify which biopolymer interactions are responsible 
for the chemo-mechanical resilience of biomass. A 
molecular-level understanding of the architecture of 
biomass helps elucidate structure/property relationships 
that inform design and optimization of pretreatment 
strategies to reduce energy input and maximize conversion 
performance of the material. This project resulted in the 
frst macromolecular model for woody plant cell walls. 
Though limited to a single plant species, methods can be 
applied to other important bioenergy crops in various states 
throughout preprocessing and conversion. 
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Boosting Hydrogen Cells: 
How To Stop Strontium From 
Slowing Them Down 
High-temperature electrolysis using solid-oxide electrolyzer 
cells is a highly promising method to produce hydrogen 
with the help of nuclear or geothermal heat sources. 
These devices typically rely on a solid electrolyte material 
that shuttles oxygen ions at high temperatures as part 
of a process that splits water molecules and siphons of 
the hydrogen fuel. However, during operation, strontium 
(Sr) atoms can migrate into diferent layers of the cell 
near the solid electrolyte, forming unwanted byproducts 
that can reduce the device’s performance by blocking 
the desired fow of oxygen ions. With funding from the 
DOE Hydrogen and Fuel Cell Technologies Ofce’s H2NEW 
consortium, advanced quantum atomistic simulations 
were performed to investigate how and when these 
Sr-containing byproducts form, how to avoid them, and 
what their consequences on performance might be. Based 
on extensive static and dynamics simulations across a wide 
variety of operation scenarios and cell chemistries, the team 
identifed one compound (SrO) that was predicted to be 
particularly problematic. Another compound (SrZrO3) was 
also identifed as a possible issue, but the team discovered 
that even trace quantities of yttrium, which is found 
naturally in certain parts of the solid-oxide electrolyzer cell, 
can mitigate these drawbacks. The research team, with 
contributors from Lawrence Livermore National Laboratory 
and NREL, used the Kestrel supercomputer to perform 
these high-fdelity calculations and combined the results 
with experimental validation. In addition to elucidating key 
mechanisms of Sr-associated performance loss in solid-
oxide electrolyzer cells, the results point to ways solid-
oxide electrolyzer cell synthesis and cell designs could be 
modifed for improved lifetimes. 
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Amorphization Modeling 
Yields Design Insights for 
Ultrawide Bandgap 
Material Design 
Aluminum nitride (AlN)-based alloys are ultrawide bandgap 
materials used for optoelectronics and electromechanics. 
Researchers have modeled alloys assuming the existence 
of crystalline phases only. However, alloy thin flms when 
synthesized in a laboratory are sometimes amorphous (i.e., 
they lack well-defned crystal structures). Consequently, 
certain alloy compositions cannot be synthesized as 
crystalline phases. Crystalline and amorphous phases 
generally exhibit signifcantly diferent functional and 
mechanical properties. Thus, it is crucial to accurately 
predict the alloy phase diagram. With funding from the 
Basic Energy Sciences program within the DOE Ofce of 
Science, researchers ran molecular dynamics on Kestrel 
to simulate amorphous (Al,RE)N heterostructural alloys 
(RE are rare-earth elements like gadolinium and terbium) 
and precisely mapped the alloy compositions prone to 
amorphization when synthesized. They showed that the 
tendency to amorphize is related to the fundamental 
elemental properties of aluminum and RE—a materials 
design guideline to inform the selection of elements to 
alloy depending on whether crystalline or amorphous 
alloys are desired. Developing new ultrawide bandgap 
(aluminum,gadolinium)N alloys that are monolithically 
integrated with microelectronics to enable neutron 
detection has potential for applications in particle physics, 
radiation safety, and homeland security. 
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MANUFACTURING 



 

More Resilient Polymer 
Membrane Options for 
Scalable Water and 
Biofuel Filtration 
Organic solvent nanofltration (OSN) is an emerging 
separation technology that uses a porous membrane to 
selectively flter undesired molecules out of a liquid (i.e., 
solvent). OSN’s energy efciency and scalability for industrial 
applications make it a promising option to purify water, 
biofuels, and hydrogen, and assist in carbon capture of 
industrial emissions. However, current OSN membranes 
are susceptible to degradation and not stable enough 
for recurring use. With funding from the DOE Industrial 
Technologies Ofce National Alliance for Water Innovation, 
researchers from the University of Connecticut used the 
Kestrel supercomputer to model the resiliency of polymeric 
membranes for OSN. Researchers combined theoretical 
modeling, nonequilibrium molecular dynamics simulations, 
and experimental data to create a solution-friction model. 
Using this model, accurate and computationally efcient 
forcefelds were identifed, enabling ML combined with 
nonequilibrium molecular dynamics simulations to explore 
the desalination performance of approximately 1,000 
polyamide membranes. The major discovery from the 
solution-friction model is that the successful transport of 
solvent mixtures through a polymeric membrane occurs 
due to the pressure diferences on either side of the 
membrane, rather than the concentration levels of the 
diferent substances in the mixture. This research indicates 
that OSN membrane design should focus on controlling the 
pore architecture, not the solubility of solvents. 
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 Simulations Reveal 
Energy-Efcient Steelmaking 
Reduction Pathway 
Steelmaking emissions originate primarily from carbon-
intense industrial heat and coke-based reduction that 
drive the iron ore reduction process. Hydrogen plasma 
smelting reduction is a promising new technology that 
can improve steelmaking with the use of hydrogen and 
electricity, but the process creates extreme environments 
with high temperatures, utilizes capital-intensive equipment 
and operations, and presents scale-up challenges. 
Researchers used Kestrel to develop a frst-principles 
continuum-scale model for argon/hydrogen thermal 
plasmas used in hydrogen plasma smelting reduction, 
which was presented recently at the 2024 American 
Chemical Society fall meeting. Plasma modeling showed 
that the addition of hydrogen results in a difuse plasma 
and lower temperatures from higher thermal difusivity of 
hydrogen compared to pure argon. Coupled reaction and 
transport models showed that the rate at which hydrogen 
moves through the porous ore is the main factor limiting 
how quickly ore is reduced.  These simulation insights will 
accelerate the transition of the steel industry without the 
need for expensive experimental testing. 
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 Simulations Inform 
3D Printing of Ultra-High-
Temperature Parts for Better 
Gas Turbines 
Gas turbines need materials that can handle extremely 
high temperatures—over 1,300°C—to improve efciency. 
Refractory metal alloys like C103 work well under these 
conditions. The Commonwealth Center for Advanced 
Manufacturing and Oak Ridge National Laboratory are 
studying how to 3D print C103 parts by testing diferent 
printer settings—such as laser power and scanning 
speed—and using computer simulations on Kestrel and 
the HPC systems at Oak Ridge to see how the metal 
behaves and solidifes. The simulation framework supports 
the optimization of the powder direct energy deposition 
advanced manufacturing process to reduce design 
lead time and minimize rejected parts or raw material 
consumption. By running these simulations on powerful 
supercomputers, the team can fne-tune the manufacturing 
process to make stronger parts faster, reduce waste, and 
speed up development for next-generation gas turbines. 
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FLUID DYNAMICS 



Timing and Direction of 
Powerful Vibrations Can 
Prevent Biomass Clogs in 
Mill Equipment 
The variability and high degree of cohesiveness in common 
biomass feedstocks can severely reduce their fowability, 
leading to clogging of biorefnery machinery, and has been 
highlighted as one of the central challenges in the handling 
and conversion of biomass. While experimental techniques 
can shed some light on strategies for improving biomass 
fowability, such approaches are generally limited to small-
scale confgurations that are not necessarily applicable 
to industrial-scale applications. Numerical modeling is 
thus an invaluable tool for gaining insight into strategies 
for handling milled biomass feedstocks. As part of the 
DOE Bioenergy Technologies Ofce-funded Feedstock-
Conversion Interface Consortium, researchers from NREL 
simulated biomass fow behavior using Kestrel. They focused 
on developing a high-fdelity, high-performance framework 
for simulating biomass fow through biorefnery equipment, 
and developed an open-source library. Researchers used 
the model to investigate how vibrational forcing techniques 
can help improve fowability, and gained insight into how 
the forcing amplitude, frequency, and direction can help 
feedstock discharge from a wedge hopper. This results in 
further understanding of the physical processes involved 
in biomass feedstock fowability and feedstock handling, 
contributing to the scale-up and start-up of demonstration 
and commercial-scale biorefneries. 
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AI Algorithm Blends 
Atmospheric Measurements 
With Physics-Rich 
Simulation Data 
The Rotor Aerodynamics, Aeroelastics, and Wake (RAAW) 
project advances our understanding of atmospheric 
measurements critical for wind energy, air quality, and 
wildfre research. While atmospheric feld campaigns 
provide essential data, practical constraints often limit 
sensor deployment, resulting in measurements from only 
unevenly distributed locations. Although physics-based 
computational models can help extrapolate atmospheric 
dynamics from measured to unmeasured regions, previous 
approaches relied on simplifed models that overlooked 
crucial physical processes. To address this limitation, 
NREL researchers, supported by the DOE Wind Energy 
Technologies Ofce, developed an innovative ML approach 
that leverages large-eddy simulation, an advanced 
atmospheric modeling technique. This methodology 
enables the reconstruction of wind speeds across an entire 
turbine rotor disk using measurements from the turbine 
hub height. By providing a comprehensive view of wind 
patterns across the rotor disk, researchers can better analyze 
how spatial wind variations infuence turbine structural 
responses. This enhanced atmospheric reconstruction 
capability complements the ExaWind simulation framework, 
enabling more rigorous validation of aerodynamic and 
structural models for modern wind turbines, which in turn, 
provides turbine manufacturers more confdence when 
designing next-generation turbines. 
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Harnessing Energy Data for 
Resource Assessments 
Growing interest in wave, tidal, current, ocean thermal, 
and river energy potential has advanced the need for 
accurate, diverse, and high-resolution datasets. Funded 
by the DOE Water Power Technologies Ofce, researchers 
from Pacifc Northwest National Laboratory, Sandia National 
Laboratories, and NREL utilized Kestrel to simulate and 
process marine energy models and to expand publicly-
available high-resolution datasets using WaveWatch3 
and Simulating WAves Nearshore (SWAN) wave modeling 
software. One example of these modeling eforts includes 
the production of year-long, high-resolution datasets (e.g., 
~100 meters) for tidal energy priority sites in the United 
States (e.g., Cook Inlet and Puget Sound). Data supported by 
Kestrel is continuously being disseminated through NREL’s 
Marine Energy Atlas, which supports the assessment and 
selection of deployment test sites, supports engineering 
requirements defnition, and provides valuable information 
about options to diversify energy sources and increase 
energy resilience.  
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Investigating Biofuel and 
Engine Design To Advance 
Fuel Efciency 
A new need has emerged for engines designed for 
bioblendstocks—biofuels blended with fossil fuels— 
that ensure maximum fuel efciency and minimal 
pollutant emissions. To help the vehicle sector optimize 
bioblendstock and engine designs, NREL researchers 
are using chemical kinetic models to evaluate fuel 
performance at a molecular level. These models help 
researchers determine the most favorable combustion 
conditions (e.g., temperature, pressure, and mixing rate) 
for a given bioblendstock. With DOE Vehicle Technologies 
Ofce funding, NREL researchers used Kestrel to simulate 
performance of several candidate bioblendstocks at various 
operating conditions inside its Advanced Fuel Ignition Delay 
Analyzer—a combustion chamber. These computational 
fuid dynamics (CFD) simulations focused on investigating 
ignition times and nitrogen oxide emissions. Measurements 
of fuel properties critical to engine performance were 
calculated at extreme operating conditions (e.g., very low 
or very high temperatures and pressures). The experimental 
data gleaned from these simulations are helping 
researchers develop combustion kinetic models for diferent 
bioblendstocks, enabling multiple mobility sectors to 
leverage improved fuel efciency for alternative liquid fuels. 
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FORECASTING 



Enhancing Energy Sector 
Readiness for Extreme 
Weather Events 
The Energy System Planning for Resilience During Severe 
Weather (ESPRSW) project aims to improve the energy 
sector’s ability to manage, ensure resource adequacy, and 
plan for the impact of severe weather on future energy 
systems by integrating methodologies such as climate data 
downscaling, energy generation modeling, and power 
system operational analysis. Increasing occurrence of severe 
weather events poses signifcant risks to energy system 
planning and operations, and incorporating these factors 
into planning tools is complex. The energy sector currently 
lacks a common set of tools or guiding principles for 
managing these risks. To use generative ML to downscale 
climate data, we must ensure that models are trained on 
data with sufcient information across scales, from large 
spatiotemporal scales of input climate models to small 
scales of state-of-the-art historical meteorological datasets. 
Previous models trained on Eagle struggled with a small 
efective receptive feld that limited the ability to preserve 
cohesive weather patterns across multiple days. Using 
Kestrel’s new H100 GPUs, the research team designed new 
model architectures with larger efective receptive felds 
that greatly improve the quality of the downscaled climate 
data. These improvements will be present in the new 
Sup3rCC v0.2.2 datasets, to be released in 2025. 
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Coupled Simulations 
Reduce Uncertainty for 
Energy Production 
The 3rd Wind Forecast Improvement Project (WFIP3), 
sponsored by the DOE Wind Energy Technologies 
Ofce, aims to enhance the understanding of 
atmospheric and ocean physics afecting ofshore 
wind resources along the U.S. East Coast. Researchers 
used Kestrel for atmospheric and coupled ocean/ 
wave/atmospheric modeling, showing the sensitivity 
of wind and turbulence to factors like turbulence 
parameterizations, initial conditions, land-sea 
circulations, wind/wave interaction, and hypothetical 
wind wakes. These multiyear simulations highlight 
the importance of three-way coupling between 
wind, ocean, and waves, reducing uncertainty in 
wind speeds near surface and improving wave height 
predictions, especially of the northeastern U.S. 
Atlantic Coast. High-resolution ocean temperature 
data further refne these models.  

Parameterization of theoretical wind farm wakes in 
high-resolution revealed sea surface warming patterns 
around the major wind energy lease areas under stably 
stratifed atmosphere-ocean boundary layer conditions. 
By quantifying the infuence of wind farms on coastal 
upwelling and mixed-layer dynamics, this research can 
inform strategies for optimizing energy production 
while minimizing potential ecological disruptions. 
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NREL has a compute solution for every research task, 
where projects often require integrating commercial 
and on-premise cloud services with the HPC system 
to support the breadth of research projects across 
DOE and partners. NREL’s Stratus Cloud Team enables 
commercial cloud solutions by partnering with Amazon 
Web Services, Google Cloud, and Microsoft Azure, and 
supports more than 175 projects. NREL’s on-premises 
cloud computing system includes both GPU and CPU 
resources, tied together with an on-demand cloud-
based job scheduler. The integration of these multiple 
compute capabilities creates a broader computing 
ecosystem, a growing part of the computational 
capabilities hosted at NREL. 

 A BROADER COMPUTING 
ECOSYSTEM 



 Tool Enables Evaluation of 
Perovskite Solar Cells 
As part of the Photovoltaic Accelerator for 
Commercializing Technologies (PACT) project, researchers 
needed access to detailed time series and voltage-current 
curves from experimental PV device data. The PV current 
voltage database (PVIVDB), hosted in the cloud, collects 
experimental data from PV modules, including outdoor 
and indoor current-voltage characteristics, operating point, 
temperature, incident irradiance, and ambient temperature. 
The tool is fexible and adaptable, handling new and 
emerging data for new experiments. Understanding PV 
module performance and how it changes over time in a 
variety of conditions is critical to accurately predict their 
long-term energy yield. The PVIVDB was particularly useful 
this year when researchers examined how metal halide 
PSCs' degradation mechanisms work under outdoor 
conditions. The team recognized that many indoor tests 
of PSCs using light-emitting diodes do not expose them 
to the levels of ultraviolet (UV) light radiation they would 
receive outdoors. Therefore, it is important to understand 
the degradation mechanisms in these cells in sunlight and 
associated UV. Using the PVIVDB to collect performance 
data of PSCs operating outdoors, researchers investigated 
degradation mechanisms in positive-intrinsic-negative-
structured PSCs to further understand the diferences 
in indoor and outdoor durability. They found that faster 
degradation occurs in the perovskite/indium-tin oxide 
interface, leading to new material designs for high efciency 
and improved UV stability of perovskite devices. 
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Improved Analysis and 
Reporting of PV Field 
Performance 
NREL researchers convened to examine an ambitious 
pathway for degradation science. Aggregating data 
from multiple sources, performing rigorous analysis, 
and making public the lessons learned can often be 
difcult due to the proprietary nature of performance 
data. Facing this need for aggregated, available data to 
serve degradation science, the PV Fleet team has built 
the Photovoltaic Durability and Reliability Database 
(PVDRDB), hosted in the cloud and deployed on Amazon 
Web Services Redshift, which demonstrates the possibility 
of aggregating proprietary data, performing analysis (on 
Kestrel), and communicating key lessons, all of which 
has informed this project going forward. PVDRDB hosts, 
in the cloud, high-quality commercial and utility-scale 
PV systems data with an average lifespan of 5 years at 
15-minute data resolution. There are approximately 9 
GW of deployed sites included, which represent 10% of 
the U.S. PV commercial and utility feet. The availability 
and aggregation of data will help NREL degradation 
researchers perform fundamental science that can 
advance the energy efciency of key technologies. 
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SolarAPP+ Facilitates Residential 
Solar Permitting and Installation 
A 2024 R&D 100 fnalist, the Solar Automated Permit Processing+ (SolarAPP+) 
web-based platform automates solar permitting for local governments 
and other authorities. Funded by the DOE Solar Energy Technologies 
Ofce, SolarAPP+ fosters rooftop solar adoption by making it easier for local 
governments to quickly and safely approve standardized rooftop projects. 
Since 2021, the collaborative efort has brought NREL, key code ofcials, and 
the solar industry together to develop standardized plan review software 
that can run compliance checks and process building permit approvals for 
eligible rooftop solar systems. SolarAPP+ helps jurisdictions review residential 
solar applications more easily by automatically checking system designs 
for safety and code compliance—and it helps installers by reducing install 
times, reducing project cancellations, and expanding access to energy by 
streamlining aspects of the permitting process. The R&D 100 has honored 
research and development in science and technology for over 60 years. 
SolarAPP+ was one of 141 fnalists in 2024. 

Cambium Datasets Help U.S. 
Electric Sector Decision Makers 
In a rapidly changing sector, it is helpful if decisions about long-lived assets are 
supported by projections looking ahead over the coming years and decades. 
NREL’s Cambium tool provides datasets of projected future values of the U.S. 
electric sector through 2050. The datasets are released annually and include 
simulated hourly emission, cost, and operational data for a range of modeled 
futures of the U.S. electric sector, with metrics designed to be useful for long-
term decision-making. The data created in this project has been downloaded 
thousands of times for a variety of users, who use the data to inform their 
decisions and research. Cambium accompanies NREL’s Standard Scenarios, 
which are an annually released set of projections of how the U.S. electric 
sector could evolve across a suite of diferent potential futures but covering 
more scenarios with less temporal granularity. The 2024 release—the fourth 
annual edition of Cambium—refects changes in technology, market, and 
policy, as well as improvements to the underlying models. 
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NEED HIGHER 
RES IMAGE 

 
 
 

BRIDGING TO THE 
DEPARTMENT OF ENERGY 
LEADERSHIP COMPUTING 

Computational scientists from 
across DOE advance energy 
innovation by leveraging the full 
DOE computing landscape. 



 Mistaken Identity: 
Mn3AlN Is Actually 
Antiperovskite Mn4N 
Antiperovskites are inorganic compounds with unique 
structures that are of interest for their superconductivity 
and potential for use in energy storage. Mn3AlN 
was frst reported in 2011 as a perovskite and soft 
ferromagnet. With funding from the DOE Ofce 
of Science, researchers—intrigued by Mn3AlN’s 
classifcation as a soft ferromagnet—decided to 
investigate Mn3AlN as it is the only example of a Mn3AN 
compound with ferromagnetic behavior. Using Kestrel 
combined with compute resources at the National 
Energy Research Scientifc Computing center, the 
team carefully investigated Mn3AlN—attempting its 
synthesis and only developing antiperovskite Mn4N 
or its precursors—and concluded, supported by DFT 
calculations, that it is more consistent with Mn4N. 
Following the previously published synthesis method 
and exploring other reactions, they were unable to 
synthesize Mn3AlN, leading them to the conclusion 
that Mn4N was the compound erroneously identifed as 
Mn3AlN. This work clarifes that Mn3AlN is not the only 
ferromagnetic Mn3AN compound because it does not 
exist. Materials discovery is an important endeavor for 
expanding the opportunities of materials utilization, 
especially in emerging application areas that are 
based on novel phenomena, including magnetic and 
quantum behavior. 

Unlocking Wind Farm 
Physics Across Vast 
Spatiotemporal Scales 
Wind farm physics involve air-fow dynamics ranging 
from micron-thick boundary layers over blade surfaces 
to kilometer-wide atmospheric areas. Though high-
fdelity models are computationally intensive and 
costly, they are currently the most promising method 
to accurately capture wind dynamics across these 
vast spatiotemporal scales. The biggest challenge 
with high-fdelity modeling is developing algorithms 
that capture complex wind phenomena and run 
efciently on HPC systems. The DOE-funded ExaWind 
project, under the Exascale Computing Project, meets 
these challenges by ofering powerful, GPU-enabled 
simulations that can accommodate high-fdelity 
models of wind farm physics. Leveraging DOE Wind 
Energy Technologies Ofce funds to use both Kestrel 
and Oak Ridge Leadership Computing Facility (OLCF) 
computational resources, NREL and Sandia National 
Laboratories researchers demonstrated and validated 
their high-fdelity models of turbulent air fow around 
turbines. On the OLCF Frontier supercomputer, 
researchers demonstrated the ability to simulate a wind 
farm composed of 16 5-MW turbines in a turbulent 
atmospheric boundary layer, using a model with about 
38 billion grid points where resolution was sufcient 
to capture blade boundary layers. On the Kestrel 
supercomputer, researchers performed key validation 
studies of wind turbines in feld and wind tunnel 
confgurations that are critical to establishing ExaWind 
code credibility. 
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 EARLY CAREERS IN 
COMPUTING 

In 2024, Kestrel was available 
to students engaged in energy 
research. Connecting early career 
students with powerful computing 
resources helps ensure a strong 
future for energy innovation. 



 
 

 
 

 
 

 
 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

Understanding Fuel Cell 
Device Complexity With AI 
In collaboration with NREL researchers, graduate 
students from Rensselaer Polytechnic Institute and New 
Mexico State University used Kestrel to complete their 
dissertation work using AI to understand transport and 
reactivity in fuel cell devices, with funding from the DOE 
Hydrogen and Fuel Cell Technologies Ofce’s ElectroCat 
Consortium. Electrocatalytic devices are well-known for 
their complexity, with catalysts, polymer electrolytes, 
ionic and gaseous species, and water all participating 
in key reactions and transport mechanisms that 
determine overall device performance. Describing 
these multicomponent devices accurately is beyond 
traditional classical and quantum mechanical 
simulation methods, so the research team developed 
an AI model of an important fuel cell catalyst: hydrated 
platinum with Nafon as the polymer electrolyte. Using 
state-of-the-art equivariant graph neural networks 
and leveraging Kestrel’s powerful GPUs for both 
training of and prediction with the AI model, they 
constructed a realistic representation of this catalyst 
and studied transport properties near and far from 
the catalyst-polymer interface, as well as reactivity of 
important species such as oxygen. Such a combined 
model of transport and reactivity has been previously 
impossible due to limitations in accuracy (size) for 
classical (quantum) simulation methods. The ultimate 
goal of this work is to quickly develop AI models of 
electrocatalytic devices for any underlying chemistry, 
catalyst, and polymer electrolyte, allowing for rational 
understanding and design of complex devices across 
various economic sectors. 

Building a Database To 
Train Neural Networks 
Calculating drag is a core component of automotive 
exterior design as it afects energy loss signifcantly at 
high speed, afecting top speed, fuel efciency, and 
stability. However, drag calculation is computationally 
expensive, requiring one CFD simulation per data point. 
Add in the complexity of modern vehicle design and 
the proprietary nature of commercial designs, and there 
are greater complications to calculating drag. Taking 
advantage of the new student allocation process on 
Kestrel, student researchers from Stanford University 
developed a method for generating datasets for 
predicting drag for automotive geometries, starting from 
a small number of beginning designs. They constructed 
a database of large eddy simulation fow felds used 
to train a convolutional neural network model for 
predicting aerodynamic performance. They tested the 
strategy using a realistic automotive geometry, with 
results showing that the convolutional neural networks 
predicted drag coefcients and surface pressures well. 
The researchers aim to complete the database with 
10,000 samples, which would make it the largest openly 
available database of realistic automotive geometries. 
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Computational Model 
Depicts Hydrogen’s Efect 
on Uranium Corrosion 
Uranium is the primary fuel for nuclear applications 
but is also its primary waste product. Understanding 
uranium corrosion is critical for storing it at nuclear 
power plants. Preventing uranium corrosion will 
enhance safety and reduce the cost of storage 
at power plants. Student researchers from the 
University of California, Davis modeled and 
isolated hydrogen’s interaction with defect sites 
in the oxidation layer to understand the corrosion 
process. They identifed defects in the corrosion 
process using DFT and will validate their fndings 
under experimental conditions, including room 
temperature and burnt fuel scenarios. Future work 
will focus on developing machine-learned force 
felds that provide similar accuracy as DFT but at 
1,200 times lower computational cost. 
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Low-Induction Rotor Design 
Could Reduce Wind Turbine 
Lifetime Fatigue and Improve 
Energy Capture 
Current research trends in wind include more efcient and 
cost-efective wind plants, whether through novel turbine 
control strategies or new turbine technologies. As part of 
the Low-Induction Rotor Wakes project—a collaborative 
doctoral research efort between NREL and Penn State— 
performance of a novel wind turbine design for future wind 
plant applications was investigated. The design is known as 
a low-induction rotor: blade design is optimized to operate 
below traditional power production optimum to reduce 
lifetime fatigue loads but has an increased rotor diameter to 
improve energy capture per turbine. 

The wind plant study was conducted using the NREL-
developed Simulator for Wind Farm Applications (SOWFA), 
a high-fdelity computational fuid dynamics solver 
that couples realistic atmospheric boundary layer fows 
with wind turbine models for full wind plant simulation. 
Computationally expensive, high-fdelity wind plant 
simulations that are typically unfeasible at the university 
level were made accessible thanks to Kestrel. Metrics for 
assessment of the novel design include the velocity defcit 
and turbulence statistics in the wake, as well as total turbine 
power production and fatigue loads. The outcomes of the 
project will improve the broader scientifc community’s 
understanding of the low-induction rotor concept, as well 
as provide insight into how clever wind turbine design can 
improve overall wind plant performance. 
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 INNOVATIONS AND 
PUBLICATIONS 



Software Records 
Title NREL Number Title NREL Number 

 

AC (Adaptive Computing) SWR-24-106 

acopf_benchmarks (AC Optimal 
Power Flow Benchmarks) SWR-24-43 

AIM Benchmark (Application 
Benchmark for Quantum 
Computing Readiness in Clean 
Energy) 

SWR-24-45 

BBOpt (Black-Box Opt) SWR-24-57 

BiRD (BioReactorDesign) SWR-24-35 

BuildingsBench: A Benchmark for 
Universal Building Load Forecasting SWR-23-51 

CloudCV (Computer Vision 
on Edge Devices for the Short 
Term Prediction of Cloud Cover 
Supplementary Code) 

SWR-24-119 

EVI-Rental SWR-24-74 

Fair Bagging Boosting Models FKA: 
Fair Forest Models SWR-24-38 

FLCPVPanel (Fort Lewis College PV 
Panel Visualization Server) SWR-24-117 

FRISM (FReight Integrated 
Simulation Model) SWR-24-40 

HERO (Hybrid Environment 
Resources and Operations) SWR-24-116 

Maniac.jl (MANIfold optimization of 
AC power fow) SWR-24-44 

MODAQ-BB (Modular Ofshore Data 
SWR-24-72

Acquisition System - Blackbox) 

N-S3 Cellular Vehicle-to-Everything 
SWR-24-54

(C-V2X) Cosimulation Framework 

PT-MELT (PyTorch Machine Learning 
SWR-24-110

Toolbox) 

Red Teaming for Grid Cybersecurity SWR-24-111 

SPADES (Scalable Parallel Discrete 
SWR-24-99

Events Simulation) 

Udon (Unity Udon) SWR-24-118 

MLUQ (Uncertainty quantifcation WFM inference SWR-24-139
SWR-24-36

for ML closure models) 

MODAQ (Modular Ofshore Data 
Acquisition System) 

SWR-24-58 

MPI-Based Stochastic Programming 
in PYthon 

SWR-24-113 

Primal-Dual Diferentiable 
Programming for Critical Load 
Restoration Problems 

SWR-24-41 

PVMesh SWR-24-123 

SPADES (Scalable Parallel Discrete 
Events Simulation) 

SWR-23-99 

SysCaps (Language Interfaces for 
Simulation Surrogates of Complex 
Systems) 

SWR-24-97 

vidyut3d (Vidyut3d: a non-
equilibrium plasma modeling tool) 

SWR-24-101 
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Economics of Sugar Production from Corn Stover.” ACS 
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Coast.” Monthly Weather Review 152 (2). https://doi. 
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Christopher Neuman, Eric Wood, and Jesse Bennett. 
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Lee, and Regis Thedin. 2024. “Validation of the 
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Tomography: A Large Eddy Simulation Study.” Journal 
of Physics: Conference Series 2767 (4). https://doi. 
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114. Martinez-Tossas, Luis A., Dries Allaerts, Emmanuel Branlard, 
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115. Mateo, Carlos, Fernando Postigo, Tarek Elgindy, Adam 
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117. Micheli, Leonardo, Matthew Muller, Marios Theristis, 
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118. Min, Misun, Michael Brazell, Ananias Tomboulides, 
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and Seonah Kim. 2023. “Efect of the β-Hydroxy Group 
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121. Murphy, Michael D., Amy Allen, Gregor P. Henze, and 
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Management 309 (June). https://doi.org/10.1016/j. 
enconman.2024.118322. 

131. 

122. Nicholson, Anthony P., and Walajabad S. Sampath. 2024. 
“First-Principles Study on the Role of Cu and Cl-Based 
Dopants in NiO.” ACS Applied Energy Materials 7 (15). 
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Energies 16 (24). https://doi.org/10.3390/en16248100. 

124. Nolen, Michelle A., Sean A. Tacey, Martha A. Arellano-
Treviño, Kurt M. Van Allsburg, and Carrie A. Farberow. 2024. 
“High-Throughput Dataset of Impurity Adsorption on 
Common Catalysts in Biomass Upgrading Applications.” 
Scientifc Data 11 (1). https://doi.org/10.1038/s41597-
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“‘Mn3AlN’ Is Really Mn4N.” Inorganic Chemistry 63 (34). 
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128. Pataroque, Kevin, Jishan Wu, Jinlong He, Hanqing Fan, 
Subhamoy Mahajan, Kevin Guo, Jason Le, et al. 2024. 
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Osmosis Membranes at Ultrahigh Pressures.” Journal of 
Membrane Science Letters 4 (2). https://doi.org/10.1016/j. 
memlet.2024.100079. 

Pei, Yansong, Ketian Ye, Junbo Zhao, Yiyun Yao, Tong Su, 
and Fei Ding. 2024. “Visibility-Enhanced Model-Free Deep 
Reinforcement Learning Algorithm for Voltage Control 
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Pham, Tan-Lien, Lin Wang, and Bin Ouyang. 2024. “Design 
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Quezada-Renteria, Javier A., Jishan Wu, Minhao Xiao, 
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Journal of Membrane Science 695 (March). https://doi. 
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Ribnitzky, Daniel, Pietro Bortolotti, Emmanuel Branlard, 
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Moore, Swagata Acharya, Zhiyuan Sun, Siyuan Qiu, et al. 
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138. Sabino, Fernando P., Xin Gang Zhao, Gustavo M. Dalpian, 
and Alex Zunger. 2024. “Impact of Symmetry Breaking 
and Spin-Orbit Coupling on the Band Gap of Halide 
Perovskites.” Physical Review B 110 (3). https://doi. 
org/10.1103/PhysRevB.110.035160. 
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141. Scott, Ryan, Nicholas Hamilton, Raúl Bayoán Cal, 
and Patrick Moriarty. 2024. “Wind Plant Wake Losses: 
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142. Sethuraman, Latha, Andrew Glaws, Miles Skinner, and 
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143. Shaler, Kelsey, Eliot Quon, Hristo Ivanov, and Jason 
Jonkman. 2024. “Wind Farm Structural Response and 
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Energy Science 9 (7). https://doi.org/10.5194/wes-9-
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144. Shams, Andalib, Qichao Wang, Juliette Ugirumurera, 
Joseph Severino, Wesley Jones, and Jibonananda 
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TEENG-8079. 

145. Sharma, Ashesh, Michael J. Brazell, Ganesh Vijayakumar, 
Shreyas Ananthan, Lawrence Cheung, Nathaniel deVelder, 
Marc T. Henry de Frahan, et al. 2024. “ExaWind: Open‐
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Turbine Simulations in Atmospheric Flows.”Wind Energy 
(January): 2886. https://doi.org/10.1002/we.2886. 

146. Sheridan, Lindsay M., Dmitry Duplyakin, Caleb Phillips, 
Heidi Tinnesand, Raj K. Rai, Julia E. Flaherty, and Larry 
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148. Simley, Eric, Dev Millstein, Seongeun Jeong, and Paul 
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149. Singh, Avtar, Jihun Song, Wei Li, Trevor Martin, Hongyi Xu, 
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Solid-State Batteries.” Extreme Mechanics Letters 69 (June). 
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Dixit, and Divya Nair. 2024. “Using Facebook to Recruit 
Urban Participants for Smartphone-Based Travel Surveys.” 
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to Teach Coordinated Wind Turbine Controllers How 
to Reduce Wake Losses.” Presented at Sandia Machine 
Learning Deep Learning Workshop, September 
10, 2024. https://www.sandia.gov/app/uploads/ 
sites/177/2024/09/20240910_1130_KenBrown_RL_to_ 
teach_coordinated_turbines.m4v. 

Cai, Mengmeng, and Michael Blonsky. 2024. “Delivery-
Risk-Aware Flexibility Scheduling and Dispatch for 
Aggregated Flexible Loads”. Presented at INFORMS 2024. 
NREL/PR-5D00-89735. https://www.nrel.gov/docs/ 
fy24osti/89735.pdf. 

Chen, Yonghong, and Jose Lara Daniel. 2024. “Interregional 
Transmission Operational Coordination.” Presented at 
the FERC Technical Conference on Increasing Real-Time 
and Day-Ahead Market and Planning Efciency Through 
Improved Software, July 9−11, 2024. NREL/PR-6A40-90432. 
https://www.ferc.gov/media/presentation-interregional-
transmission-operational-coordination-national-
renewable-energy. 

Dasgupta, Debolina, Muhsin Ameen, Chao Xu, Riccardo 
Scarcelli, Ben Keeton, Sam Whitman, and Sinan Demir. 
2024. “Towards Accurate Combustion and Emissions 
Modeling for Sustainable Aviation Fuels.” Presented 
at the DOE Vehicle Technologies Ofce Annual Merit 
Review, June 2024. https://www1.eere.energy.gov/ 
vehiclesandfuels/downloads/2024_AMR/DORMA038_ 
Dasgupta_2024_o.pdf. 

Deak, Nick, Hariswaran Sitaraman, Yimin Lu, Nepu Saha, 
Jordan Klinger, and Yidong Xia. 2024. “DEM Modeling of 
the Infuence of vibrational forcing on the fowability of 
milled biomass in wedge-shaped hoppers.” Presented 
at the NETL Multiphase Flow Science Workshop, 
August 2024. https://mfx.netl.doe.gov/wp-content/ 
uploads/2024/09/Deak_081324_320PM.pdf. 
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265. Deline, Chris, Dirk Jordan, Kirsten Perry, Michael Deceglie, 
Robert White, and Kevin Anderson. 2024. “PV System 
Availability from Commercial and Utility-Scale Systems.” 
Presented at the DNV Availability Webinar, February 1, 
2024. NREL/PR-5K00-88590. https://www.nrel.gov/docs/ 
fy24osti/88590.pdf. 

266. Duvall, Andrew, and Abigial Wheelis. 2023. “Understanding 
Mobility Behavior Using OpenPATH.” Presented at the 
CDOT & Rocky Mountain ACT Transportation Demand 
Management Conference, October 2023. NREL/PR-5400-
87744. https://www.nrel.gov/docs/fy24osti/87744.pdf. 

267. Egan, Hilary, Davi Febba-Marcelo, Max Gallant, Nick 
Wunder, Stephen Shaefer, Andriy Zakutayev, and Marc 
Day. 2024. “AI for Material Synthesis: From Data Analysis 
to Guiding Experiment.” Presented at the Idaho National 
Laboratory Digital Engineering Conference, 2024. 

268. Emami, Patrick, A. Cortiella, A. Glaws, Ryan King. 2024. 
“Accelerating Community Clean Energy Transitions with 
Generative AI.” Presented at the INL Digital Engineering 
Conference, Idaho Falls, Idaho, April 2024. NREL/PR-2C00-
89713. https://dice.inl.gov/content/uploads/3/2024/11/ 
Patrick-Emami_Accelerating-Community-Clean-Energy-
Transitions-with-Generative-AI.pdf. 

269. Fields, H., J. Weers, C. English, L. Bertis, and E. Erickson. 
2023. “Verify Database: Centralized and Secure Technology 
Verifcation.” Presented at DOE Data Days October 2023, 
Lawrence Livermore National Laboratory. https:// 
data-science.llnl.gov/sites/data_science/fles/2024-
02/1025_0900_h_felds.pdf. 

270. Giford, Jefrey, Munjal Shah, William Buttner, and Zhiwen 
Ma. 2024. “Hydrogen Leak Modeling for Development 
of Smart Distributed Monitoring Under Unintended 
Releases.” Presented at ASME ES 2024. NREL/PR-5700-
90599. https://www.nrel.gov/docs/fy25osti/90599.pdf. 

271. Hale, Elaine, Daniel Thom, Lixi Liu, Ashreeta Prasanna, and 
Meghan Mooney. 2024. “Powered by dsgrid.” Presented 
July 2024. NREL/PR-6A40-90646. https://www.nrel.gov/ 
docs/fy24osti/90646.pdf. 

272. Hale, Elaine. 2024. “VPP Participation Models: What 
is the Objective?” Presented at the ESIG 2024 Spring 
Technical Workshop, Tucson, Arizona, March 26, 2024. 
NREL/PR-6A40-89273. https://www.nrel.gov/docs/ 
fy24osti/89273.pdf. 

273. Jorgenson, Jennie, Kate Doubleday, Ilya Chernyakhovskiy, 
Kodi Obika, Travis Williams, Evan Rosenlieb, and Victor 
Igwe. 2024. “The Lithuania 100% Renewable Energy Study 
- Interim Results: Electricity System Scenarios for 2030.” 
Presented May 2024. NREL/PR-6A40-89564. https://www. 
nrel.gov/docs/fy24osti/89564.pdf. 

274. Jorgenson, Jennie, Kate Doubleday, Ilya Chernyakhovskiy, 
Kodi Obika, Travis Williams, Evan Rosenlieb, and Victor 
Igwe. 2024. “The Lithuania 100% Renewable Energy 
Study - Interim Results: Electricity System Scenarios for 
2030.” NREL/PR-6A40-89564. https://www.nrel.gov/docs/ 
fy24osti/89564.pdf. 

275. Joshi, Prateek, Gabriel Zuckerman, Katy Waechter, Nathan 
Lee, and Carishma Gokhale-Welch. 2023. “Identifying 
Potential Candidates for Renewable Energy Zones (REZs) 
in Bangladesh.” Presented at the Energy Conference 2023: 
National and Global Issues (ENCON23), December 2023, 
Dhaka, Bangladesh. NREL/PR-5R00-88268. https://www. 
nrel.gov/docs/fy24osti/88268.pdf. 

276. Joshi, Prateek, Patrick Dufy, Aubryn Cooperman, Kaniz 
Fatema, and Gabriel Zuckerman. 2024. “Ofshore Wind 
Energy Fundamentals for Bangladesh.” Presented at 
Sustainable and Renewable Energy Development 
Authority of Bangladesh Training, June 2024. NREL/ 
PR-7A40-89981. https://www.nrel.gov/docs/ 
fy24osti/89981.pdf. 

277. Joshi, Prateek, Sarah Inskeep, and Ilya Chernyakhovskiy. 
2024. “Impacts of Renewable Energy and Green Hydrogen 
Policies on Uttar Pradesh’s Power Sector Future: Additional 
Modeling Scenarios to Explore Hydrogen Flexibility.” 
Presented September 2024. NREL/PR-7A40-90600. 
https://www.nrel.gov/docs/fy24osti/90600.pdf. 

278. Lany, Stephan. 2024. “Computational approaches for 
clean energy materials: Defect graph neural networks, 
equilibria with interacting defects, and interface structure 
prediction.” Presented at the MRS Spring Meeting, 
Symposium EN11, Seattle, Washington, April 22−26, 
2024. NREL/PR-5K00-89707. https://www.nrel.gov/docs/ 
fy24osti/89707.pdf. 

279. Lany, Stephan. 2024. “Defect Equilibria From First 
Principles: From Widegap Oxides to Topological 
semimetals.” Presented at the First International Workshop 
FLAIR 2024, Seeheim-Jugenheim, Germany, March 3−7, 
2024. NREL/PR-5K00-89067. https://www.nrel.gov/docs/ 
fy24osti/89067.pdf. 

280. Ma, Zhiwen, and Janna Martinek. 2024. “Development of 
a Light-Trapping, Planar-Cavity Receiver for Enclosed Solar 
Particle Heating.” Presented at ASME ES 2024, July 15−17, 
Anaheim, California, 2024. NREL/PR-5700-90501. https:// 
www.nrel.gov/docs/fy25osti/90501.pdf. 

74 | Advanced Computing Annual Report 2024 

https://www.nrel.gov/docs/fy24osti/88590.pdf
https://www.nrel.gov/docs/fy24osti/88590.pdf
https://www.nrel.gov/docs/fy24osti/87744.pdf
https://data-science.llnl.gov/sites/data_science/files/2024-02/1025_0900_h_fields.pdf
https://data-science.llnl.gov/sites/data_science/files/2024-02/1025_0900_h_fields.pdf
https://data-science.llnl.gov/sites/data_science/files/2024-02/1025_0900_h_fields.pdf
https://www.nrel.gov/docs/fy25osti/90599.pdf
https://www.nrel.gov/docs/fy24osti/90646.pdf
https://www.nrel.gov/docs/fy24osti/90646.pdf
https://www.nrel.gov/docs/fy24osti/89273.pdf
https://www.nrel.gov/docs/fy24osti/89273.pdf
https://www.nrel.gov/docs/fy24osti/89564.pdf
https://www.nrel.gov/docs/fy24osti/89564.pdf
https://www.nrel.gov/docs/fy24osti/89564.pdf
https://www.nrel.gov/docs/fy24osti/89564.pdf
https://www.nrel.gov/docs/fy24osti/88268.pdf
https://www.nrel.gov/docs/fy24osti/88268.pdf
https://www.nrel.gov/docs/fy24osti/89981.pdf
https://www.nrel.gov/docs/fy24osti/89981.pdf
https://www.nrel.gov/docs/fy24osti/90600.pdf
https://www.nrel.gov/docs/fy24osti/89707.pdf
https://www.nrel.gov/docs/fy24osti/89707.pdf
https://www.nrel.gov/docs/fy24osti/89067.pdf
https://www.nrel.gov/docs/fy24osti/89067.pdf
https://www.nrel.gov/docs/fy25osti/90501.pdf
https://www.nrel.gov/docs/fy25osti/90501.pdf
https://dice.inl.gov/content/uploads/3/2024/11


  
 

 

  
 

 
 

  
 

 
 

  
 

 
 

 

  

 

  
 
 

 
 

  
 
 

 
 

  
 

 

  
 
 

  
 

 

  
 

  
 

 
 

  
 

  
 

 
 

 
 

  
 

 

  
 

 

  
 

 
 

281. Maack, Jonathan, Devon Sigler, and Ariel Goodwin. 2024. 289. 
“Exploiting Power Flow Manifold to Solve AC Optimal 
Power Flow.” Presented at the 2024 INFORMS Optimization 
Society Conference, 2024. NREL/PR-2C00-89162. https:// 
www.nrel.gov/docs/fy24osti/89162.pdf. 

282. Mirletz, Brian, Laura Vimmerstedt, Greg Avery, Ashok Sekar, 290. 
Dana Stright, Dayo Akindipe, Stuart Cohen, et al. 2024. 
“Annual Technology Baseline: The 2024 Electricity Update.” 
Presented at webinar, July 23, 2024, for launch of Electricity 
ATB update. NREL/PR-7A40-89960. https://www.nrel.gov/ 
docs/fy24osti/89960.pdf. 291. 

283. Mueller, Juliane, Hillary Egan, and Kevin Grifn. 2024. 
“Enabling Scale-up through Multi-fdelity Adaptive 
Computing.” Presented at the 2024 INFORMS Optimization 
Society Conference, March 2024. NREL/PR-2C00-89329. 

292. 

https://www.nrel.gov/docs/fy24osti/89329.pdf. 

284. N. A., Sreejith, Hariswaran Sitaraman, Nicholas Deak, and 
Marc Day. 2024. “Spectral Analysis of Regular Material 
Point Method and its Application to Study High Pressure 
Reverse Osmosis Membrane Compaction and Embossing.” 

293. 

Presented at MPM Workshop, University of California 
Berkeley, September 2024. NREL/PR-2C00-91212. https:// 
www.nrel.gov/docs/fy24osti/91212.pdf. 

285. Onorato, Shaun, Dr. Taichi Kuroki, Dr. Jamie Kee, Dr. Krishna 
294. 

Reddi, and Lauren Matter. 2024. “Assessment of Heavy-
Duty Fueling Methods and Components.” Presented 
at the DOE HFTO Annual Merit Review 2024. NREL/ 
PR-5K00-90049. https://www.hydrogen.energy.gov/ 
docs/hydrogenprogramlibraries/pdfs/review24/scs031_ 
onorato_2024_o.pdf?sfvrsn=ae4a575c_3. 

286. Onorato, Shaun, Taichi Kuroki, Jamie Kee, Krishna Reddi, 
and Lauren Matter. 2024. “Assessment of Heavy-Duty 

295. 

Fueling Methods and Components.” Presented at the 
2024 DOE Hydrogen Program Annual Merit Review 
and Peer Evaluation Meeting, May 6−9, 2024, Arlington, 
Virginia. https://www.hydrogen.energy.gov/docs/ 
hydrogenprogramlibraries/pdfs/review24/scs031_ 296. 
onorato_2024_o.pdf. 

287. Ortega Pastor, Angela, Grant Ellwood, Maya Fein-Cole, 
Jal Desai, Larson Lovdal, Evan Rosenlieb, Marie Rivers, 
Ben Rakov, and Gail Mosey. 2024. “Assessing the Solar 
Photovoltaic Potential in Puerto Rican Brownfelds and 297. 
Reservoirs: Analysis and Modeling.” Presented June 2024. 
NREL/PR-7A40-89876. https://www.nrel.gov/docs/ 
fy24osti/89876.pdf. 

288. Ovaitt, Silvana, and Brian Mirletz. 2024. “NREL’s Tools for 
AgriPV Modeling.” Presented at the World Conference 
in Agrivoltaics, Denver, Colorado, June 11, 2024. 
NREL/PR-5K00-90300. https://www.nrel.gov/docs/ 
fy24osti/90300.pdf. 

Ovaitt, Silvana, and Chris Deline. 2024. “Catching Rays: 
How Bifacial_Radiance Sheds Light on the Future of 
Solar PV.” Presented at the Radiance Workshop 2024, 
SLC. NREL/PR-5K00-91122. https://www.nrel.gov/docs/ 
fy24osti/91122.pdf. 

Ovaitt, Silvana, Chong Seok Choi, Kai Lepley, Kate 
Doubleday, and Jordan MackNick. 2024. “Illuminating 
Agrivoltaics at NREL.” Presented at UC Merced Agrivoltaics 
Seminars, 2024. NREL/PR-5K00-91195. https://www.nrel. 
gov/docs/fy24osti/91195.pdf. 

Ovaitt, Silvana. 2024. “Bifacial PV: De Tudo um Pouco.” 
Presented at Seminário na Fotovoltaica-UFSC, May 23, 
2024. https://www.nrel.gov/docs/fy24osti/90049.pdf. 

Pash, Graham, Malik Hassanaly, and Shashank Yellapantula. 
2024. “Equipping Neural Network Surrogates with 
Uncertainty for Propagation in Physical Systems.” Presented 
at SIAM UQ24, March 1, 2024. NREL/PR-2C00-89061. 
https://www.nrel.gov/docs/fy24osti/89061.pdf. 

Prabakar, Kumaraguru. 2024. “Experimental Setup and 
Learning-Based AI Model for Developing Accurate PV 
Inverter Models.” Presented April 2024. NREL/PR-5D00-
89768. https://www.nrel.gov/docs/fy24osti/89768.pdf. 

Rahimi, Mohammad, Marc Henry de Frahan, Olga 
Doronina, Bruce Perry, Shashank Yellapantula, Ian Cormier, 
Marc Day, and Michael Martin. 2023. “Infuence of Real 
Gas Efects on Chemical Kinetics in Oxycombustion 
in Supercritical Carbon Dioxide.” Presented at the 76th 
Annual Meeting of the Division of Fluid Dynamics, 2023, 
Washington, D.C. NREL/PR-2C00-88165. https://www.nrel. 
gov/docs/fy24osti/88165.pdf. 

Riccobono, Nick. 2023. “Modeling Wind-Hydrogen System 
and Analyzing Curtailment.” Presented at the NAWEA 
Wind Tech 2023 Conference, October 31, 2023, Denver, 
Colorado. NREL/PR-5000-87539. https://www.nrel.gov/ 
docs/fy24osti/87539.pdf. 

Sergi, Brian, Charalampos Avraam, Burcin Cakir Erdener, 
and Jess Kuna. 2024. “Evaluating Transmission’s Role in 
Resource Adequacy.” Presented at the IEEE Resource 
Adequacy Working Group, July 25, 2024. NREL/PR-6A40-
90617. https://www.nrel.gov/docs/fy24osti/90617.pdf. 

Shankari, K., Andrew Duvall, Cemal Akcicek, and Zack 
Aemmer. 2023. “The CanBikeCO Full Pilot: Long-Term 
Results and Analysis.” Presented at the Behavior, Energy 
and Climate Change (BECC) Conference, November 12–15, 
2023, Sacramento, California. https://www.osti.gov/ 
biblio/2228318. 
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298. Sitaraman, Hari, Nicholas Deak, Sreejith Appukuttan, Ethan 
Young, Jefrey Allen, and Francois Usseglio-Viretta. 2024. 
“Discrete-Element and Material-Point Method-based 
(DEM and MPM) Solvers for Sustainable Technologies.” 
Presented at SIAM MPE, June 11, 2024. NREL/PR-2C00-
90245. https://www.nrel.gov/docs/fy24osti/90245.pdf. 

299. Sitaraman, Hari, Sai Vishnu Korsipati, Laxminarayan Raja, 
Marc Day, Noemi Leick, Yuri Korobeinikov, and Sridhar 
Seetharaman. 2024. “High-Fidelity Arc-Discharge Model 
for Hydrogen-Plasma-Smelting-Reduction of Iron Ore.” 
Presented at the ACS Fall Meeting, 2024. NREL/PR-2C00-
90989. https://www.nrel.gov/docs/fy24osti/90989.pdf. 

300. Stephen, Gord, Simon Tindemans, and Genevieve de 
Mijolla. 2024. “Fundamentals of Resource Adequacy for 
Modern Power Systems.” Presented at the IEEE Power and 
Energy Society General Meeting 2024. NREL/PR-6A40-
90923. https://cmte.ieee.org/pes-rawg/wp-content/ 
uploads/sites/164/2024/08/IEEE_RATutorial_fnal.pdf. 

301. Susuki, Kristen, J.S. Chen, Jef Allen. 2024. “Leveraging a 
Neural Network-Enhanced Reproducing Kernel Particle 
Method for Multiphysics Degradation Modeling of Energy 
Storage Materials.” Presented at the WCCM Conference, 
Vancouver, BC, Canada, July 22, 2024. NREL/PR-2C00-
89941. https://www.nrel.gov/docs/fy24osti/89941.pdf. 

302. Susuki, Kristen, J.S. Chen, Jef Allen. 2024. “Multiphysics 
Degradation Modeling of Energy Storage Materials via 
RKPM with a Neural Network-Enhancement.” Presented 
at the EMI Conference, Chicago, Illinois, May 2024. 
NREL/PR-2C00-89940. https://www.nrel.gov/docs/ 
fy24osti/89940.pdf. 

303. Tan, Jin, Marilyn Jayachandran, Mohanmed Osman, and 
Aung Thant. 2024. “Impact of the 2024 Solar Eclipse on 
the Interconnections in the United States.” Presented at 
OE Electricity Advisory Committee Brief, June 5, 2024. 
https://www.energy.gov/sites/default/fles/2024-
06/Impact%20of%20the%202024%20Solar%20 
Eclipse%20on%20the%20Interconnection%20in%20 
the%20US_optimized.pdf. 

304. Thomas, Jared, Cameron Irmas, Genevieve Starke, Elenya 
Grant, Nicholas Riccobono, Zach Tully, Pietro Bortolotti, 
Garrett Barter, and Chris Bay. 2023. “Wind Turbine Design 
Optimization for Hydrogen Production.” Presented at 
NAWEA Wind Tech 2023 Conference, October 31, 2023, 
Denver, Colorado. NREL/PR-5000-87788. https://www. 
nrel.gov/docs/fy24osti/87788.pdf. 

305. Thornburg, Nicholas. 2024. “Reaction Engineering: a Lost 
(and Found) Art For a Decarbonized Future.” Presented at 
the Brown University National Laboratory Day, April 19, 
2024. NREL/PR-5400-89021. https://www.nrel.gov/docs/ 
fy24osti/89021.pdf. 

306. Uekert, Taylor. 2023. “Polymer Recycling Opportunities and 
Challenges.” Presented at NREL UM Workshop, October 13, 
2023. NREL/PR-6A20-87753. https://www.nrel.gov/docs/ 
fy24osti/87753.pdf. 

307. Vercellino, Roberto, Gustavo Campos, and Maggie Mann. 
2023. “Evaluation of Behind-the-Meter Resources for 
Public Transit Electrifcation: Insights from the NY-MTA.” 
Presented at the EPRI Bus and Truck Working Council, 
October 24, 2023. https://publicdownload.epri.com/ 
PublicAttachmentDownload.svc/AttachmentId=86072. 

308. Vercellino, Robi. 2024. “Athena ZEV Overview.” 
Presented at the EPRI Infrastructure Working Council, 
June 12, 2024. https://publicdownload.epri.com/ 
PublicAttachmentDownload.svc/AttachmentId=88883. 

309. Vimmerstedt, Laura, Ranjit Desai, Matthew Heine, Paige 
Jadun, Ling Tao, Arthur Yip, Adarsh Bafana, Hao Cai, 
Amgad Elgowainy, Ehsan Islam, Uisung Lee, Aymeric 
Rousseau, and Ram Vijayogopal. 2023. “Annual Technology 
Baseline: The 2022 Transportation Update.” Presented at 
the 2022 Transportation Annual Technology Baseline 
Update webinar, December 14, 2023. NREL/PR-6A20-
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Measure Documentation: Packaged Water-to-Air 
Geothermal Heat Pump. NREL/TP-5500-89131. https://doi. 
org/10.2172/2376141. 

Prasanna, Ashreeta, Jane Lockshin, Megan Day, and Kate 
Anderson. 2023. LA100 Equity Strategies. Chapter 9: 
Equitable Community Solar Access and Benefts. NREL/ 
TP-7A40-85956. https://doi.org/10.2172/2221841. 

Present, Elaina, Philip White, Chioke Harris, Rajendra 
Adhikari, Yingli Lou, Lixi Liu, Anthony Fontanini, 
Christopher Moreno, Joseph Robertson, and Jef Maguire. 
2024. ResStock Dataset 2024.1 Documentation. NREL/ 
TP-5500-88109. https://doi.org/10.2172/2319195. 

Present, Elaina, Eric Wilson, Carlo Bianchi, and Rachel 
Romero. 2024. Residential Facade Retrofts Modeling: 
Results and Documentation. NREL/TP-5500-84930. https:// 
doi.org/10.2172/2290258. 
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378. Ravi, Vikram, Yun Li, Garvin Heath, Isaias Marroquin, 
Megan Day, and Julien Walzberg. 2023. LA100 Equity 
Strategies. Chapter 11: Truck Electrifcation for Improved 
Air Quality and Health. NREL/TP-6A20-85958. https://doi. 
org/10.2172/2221835. 

379. Romero-Lankao, Patricia, Lis Blanco, and Nicole Rosner. 
2023. LA100 Equity Strategies. Chapter 3: Community-
Guided Energy Equity Strategies. NREL/TP-5400-85950. 
https://doi.org/10.2172/2221832. 

380. Romero-Lankao, Patricia, Nicole Rosner, and Lis Blanco. 
2023. LA100 Equity Strategies. Chapter 4: Lessons Learned 
and Options for Community Engagement in Los Angeles. 
NREL/TP-5400-85951. https://doi.org/10.2172/2221838. 

381. Romero-Lankao, Patricia, Nicole Rosner, Jane Lockshin, 
Daniel Zimny-Schmitt, and Lis Blanco. 2023. LA100 Equity 
Strategies. Chapter 1: Justice as Recognition. NREL/ 
TP-5400-85948. https://doi.org/10.2172/2221831. 

382. Rosner, Nicole, Lis Blanco, Patricia Romero-Lankao, and 
Daniel Zimny-Schmitt. 2023. LA100 Equity Strategies. 
Chapter 2: Procedural Justice. NREL/TP-5400-85949. 
https://doi.org/10.2172/2221836. 

383. Sandoval, Noah, Katelyn Stenger, Anthony Fontanini, 
Lixi Liu, Janet Reyna, Philip White, Opeoluwa Olawale, 
Ry Horsey, Patricia Romero-Lankao, and Nicole Rosner. 
2023. LA100 Equity Strategies. Chapter 6: Universal Access 
to Safe and Comfortable Home Temperatures. NREL/ 
TP-5500-85953. https://doi.org/10.2172/2221833. 

384. Sekar, Ashok, Ashreeta Prasanna, Paritosh Das, Megan 
Day, and Kate Anderson. 2023. LA100 Equity Strategies. 
Chapter 8: Equitable Rooftop Solar Access and Benefts. 
NREL/TP-7A40-85955. https://doi.org/10.2172/2221840. 

385. Stenger, Katelyn, Philip White, Anthony Fontanini, Lixi 
Liu, Janet Reyna, Noah Sandoval, Ry Horsey, Opeoluwa 
Olawale, Joseph Robertson, and Jef Maguire. 2023. LA100 
Equity Strategies. Chapter 7: Housing Weatherization 
and Resilience. NREL/TP-5500-85954. https://doi. 
org/10.2172/2221834. 

386. Tsiropoulou, Eirini, Aisha Rahman, and Md Siraj. 2024. 
HELIOCOMM: Wireless Controls State-of-the-Art Report. 
NREL/SR-5K00-88431. https://doi.org/10.2172/2310347. 

387. Van Sant, Amy. 2024. End-Use Savings Shapes Upgrade 
Package Documentation: Wall and Roof Insulation, New 
Windows, LED Lighting, HP-RTU and ASHP-Boiler. NREL/ 
TP-5500-86602. https://doi.org/10.2172/2441260. 

388. Van Sant, Amy, and Chris CaraDonna. 2024. End-Use 
Savings Shapes Measure Documentation: Demand 
Control Ventilation. NREL/TP-5500-86897. https://doi. 
org/10.2172/2284042. 

389. Van Sant, Amy, Chris CaraDonna, and Andrew Parker. 
2023. End-Use Savings Shapes Measure Documentation: 
LED Lighting. NREL/TP-5500-86100. https://doi. 
org/10.2172/2234225. 

390. Van Sant, Amy, and Marlena Praprost. 2024a. End-Use 
Savings Shapes Upgrade Package Documentation: LED 
Lighting, HP-RTU and ASHP-Boiler. NREL/TP-5500-86601. 
https://doi.org/10.2172/2440622. 

391. ———. 2024b. End-Use Savings Shapes Upgrade 
Package Documentation: Wall and Roof Insulation 
and New Windows. NREL/TP-5500-86599. https://doi. 
org/10.2172/2440621. 

392. Veselka, Thomas, Jennie Jorgenson, Matija Pavičević, 
Quentin Ploussard, and Thushara De Silva. 2024. Impact 
of Lost Generation at the Glen Canyon Powerplant Due 
to the Environmental Requirements for the Years 2024 to 
2027. ANL-24/29. https://doi.org/10.2172/2377679. 

393. Waechter, Katy, Eric O’Shaughnessy, Sudha Kannan, and 
Robin Burton. 2024. Technical Potential and Meaningful 
Benefts of Community Solar in the United States. NREL/ 
TP-6A20-87524. https://doi.org/10.2172/2308823. 

394. Walker, Andy, and Solomon Olshin. 2024. Optimize 
Topology, Component Sizes, and Operating Strategy 
of Participant’s Protype: Cooperative Research and 
Development Final Report. NREL/TP-5C00-90888. https:// 
doi.org/10.2172/2446588. 

395. Wallace, Anthony, Anna Liao, David Rager, Adarsh 
Hasandka, Abhijeet Sahu, Nicholas Ryan, Steven Drake, 
et al. 2024. CloudZero Phase 2 Technical Report. NREL/ 
TP-5R00-88566. https://doi.org/10.2172/2346119. 

396. White, Philip, Elaina Present, Chioke Harris, Jes Brossman, 
Anthony Fontanini, Noel Merket, and Rajendra Adhikari. 
2024. ResStock 2024.2 Dataset. NREL/TP-5500-89600. 
https://doi.org/10.2172/2340765. 

397. Wiley, Will, Matthew Barrington, and Matthew Barrington. 
2024. Optimization of Fairing Geometry for ORPC 
Modular RivGen Power System: Cooperative Research 
and Development (Final Report). NREL/TP-5700-91320. 
https://doi.org/10.2172/2447469. 

398. Woldekidan, Korbaga. 2024a. End-Use Savings Shapes 
Measure Documentation: Boiler Replacement with Air-
Source Heat Pump Boiler and Electric Boiler Backup. NREL/ 
TP-5500-86199. https://doi.org/10.2172/2367542. 

399. ———. 2024b. End-Use Savings Shapes Measure 
Documentation: Boiler Replacement with Air-Source 
Heat Pump Boiler and Natural Gas Boiler Backup. NREL/ 
TP-5500-87536. https://doi.org/10.2172/2368812. 
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400. Wood, Eric, Brennan Borlaug, Killian McKenna, Jeremy 
Keen, Bo Liu, Jiayun Sun, Dave Narang, et al. 2024. 
Multi-State Transportation Electrifcation Impact Study: 
Preparing the Grid for Light-, Medium-, and Heavy-Duty 
Electric Vehicles. NREL/TP-5400-88795. https://doi. 
org/10.2172/2329422. 

401. Xiong, Jie, and Janghyun Kim. 2024a. End-Use Savings 
Shapes Measure Documentation: Dispatch Schedule 
Generation for Demand Flexibility Measures. NREL/ 
TP-5500-89343. https://doi.org/10.2172/2349286. 

402. ———. 2024b. End-Use Savings Shapes Measure 
Documentation: Thermostat Control for Load Shedding 
in Large Ofces. NREL/TP-5500-89340. https://doi. 
org/10.2172/2349284. 

403. ———. 2024c. End-Use Savings Shapes Measure 
Documentation: Thermostat Control for Load Shifting 
in Large Ofces. NREL/TP-5500-89341. https://doi. 
org/10.2172/2349285. 

404. Zahle, Frederik, Athanasios Barlas, Kenneth Loenbaek, 
Pietro Bortolotti, Daniel Zalkind, Lu Wang, Casper 
Labuschagne, Latha Sethuraman, and Garrett Barter. 
2024. Defnition of the IEA Wind 22-Megawatt Ofshore 
Reference Wind Turbine. Technical University of Denmark. 
https://doi.org/10.11581/DTU.00000317. 

Brochures and 
Fact Sheets 
Baranowski, Ruth, MacDonald, Suzanne, and Preziuso, Danielle. 2024. 
Distributed Wind Energy Resource Hub. National Renewable Energy 
Laboratory and Pacifc Northwest National Laboratory for the U.S. 
Department of Energy (DOE) Wind Energy Technologies Ofce. 
https://www.nrel.gov/docs/fy24osti/89034.pdf. 

NREL (2024). A Path to Clean Energy: Cross-Subsidization Concerns 
From Local Solar Development in Frankfort, Kentucky That Can 
Apply to Other Communities. NREL. https://www.nrel.gov/docs/ 
fy24osti/89034.pdf. 

Books and Chapters 
Gorai, Prashun, and Toriyama, Michael Y. 2024. “Computational and 
Data-Driven Development of Thermoelectric Materials.” 
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Many thanks to these principal investigators and their teams, communicators, and others for contributing to the advanced computing research highlights: 
Zia Abdullah, NREL; Aaron Andersen, NREL; Murali Baggu, NREL; Sage Bauers, NREL; Julie Bessac, NREL; Matt Beard, NREL; Yannick Bomble, NREL; Liz Breazeale, NREL; 
Grant Buster, NREL; Gerbrand Ceder, University of California, Berkeley; Matt Churchfield, NREL; Peter Ciesielski, NREL; Beth Clark, NREL; Jeff Cook, NREL; 
Justin Daugherty, NREL; Chris Deline, NREL; Fei Ding, NREL; Paula Doubrawa, NREL; Hilary Egan, NREL; John Farrell, NREL; David Gaines, NREL; Peter Gagnon, NREL; 
Kenny Gruchalla, NREL; Nancy Haegel, NREL; Taylor Henry, NREL; Shanshan Hu, West Virginia University; Kevin Huang, University of South Carolina; Roderick Jackson, NREL; 
Jennifer King, NREL; Levi Kilcher, NREL; Raghavendra (Raghu) Krishnamurthy, Pacific Northwest National Laboratory; Ambar Kulkarni, University of California, Davis; 
Gianluca Laccarino, Stanford University; Yousub Lee, Oak Ridge National Laboratory; Jeffrey McCutcheon, University of Connecticut; Robert McCormick, NREL; 
Lindsey McGuirk, NREL; Kristen Munch, NREL; David Palchek, NREL; Annabelle Pratt, NREL; Gian Porro, NREL; Matt Ringer, NREL; Marsha Sanchez, NREL; 
Sridhar Seetharaman, Arizona State University; Laura Schelhas, NREL; Manajit Sengupta, NREL; Michael Sprague, NREL; Martha Symko-Davies, NREL; 
Mark Van Schilfgaarde, NREL; Ravishankar Sundararaman, Rensselaer Polytechnic Institute; Brooke Van Zandt, NREL; Derek Vigil-Fowler, NREL; 
Chunsheng Wang, University of Maryland; Mary Werner, NREL; Keith Wipke, NREL; Brandon Wood, Lawrence Livermore National Laboratory; 
Claire Xiong, Boise State University; and Zimanyi Group, University of California, Davis. 
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