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Why Should You Care
About EMIS?




In the United States,
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Transmission Organizations
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Electricity Markets Are Unlike Any Other Market
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Source: Marginal Cost Pricing in a World without Perfect Competition NREL | 5



https://www.nrel.gov/docs/fy18osti/69076.pdf

Core Challenge: Getting Prices Right

» Market prices and operational outcomes impact
investment decisions, which in turn influence
resource adequacy (RA). This interaction is
especially challenging under future economic,
market, and system uncertainty.

Market
Design

» Traditional capacity expansion models Resource Investment/
inherently guarantee cost recovery and miss Adequacy AEHISIISE
nuances of real-world investment processes,
such as imperfect information and investor risk
attitudes.
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EMIS: A Fundamentally Different Modeling Approach

 Agent-based capacity expansion modeling with detailed representation of market

design, as well as imperfect information and different risk attitudes, technology
preferences, and financing parameters

e (Capture interaction between market design, investment, and RA
* [Integrated with NREL's Probabilistic Resource Adequacy Suite (PRAS) and Sienna tools

A\ 4
Electricity Markets and Wholesale Electricity Market Clearing Resource Adequacy Model
Investment Suite (EMIS) - - P §
Energy and Ancillary Services Single- or Multi-Stage
: ; < Operations
Capacity Expansion Model (CEM) . Markets < _ _
(Max. social welfare) G,enerator Bu_ll(_j/ (Sienna PCM) sSie”"a (Sienna PCM) ss'e””a
Retirement Decisions \ y \ J
\ . ~ e N
Y A _ I Capacity Market L Single-Stage Operations
) Market Bids - ’ with Monte Carlo
4 N\
Heterogenous, Profit- Renewable Energy Outages (PRAS)
Seeking Investor Agent X, Market Prices, Certificates (REC) / Clean . J
Scenarioy Accepted Bids, Energy Market
Cleared Capacities L )
NREL | 7

Modified from https://doi.org/10.1016/j.apenergy.2021.117908 PCM = Production Cost Model (unit commitment and economic dispatch)


https://www.nrel.gov/analysis/pras.html
https://www.nrel.gov/analysis/sienna.html
https://github.com/NREL/EMISAgentSimulation.jl

EMIS Can Answer Questions Relating to

Market Design and RA Under Uncertainty

e What market structures are needed to incentivize for investment of
the attributes needed to support RA?

 How robust are those market structures to extreme weather and/or
climate change (with temperature-correlated outages)?

 How does uncertainty from other sources (load growth, policy, market
design, fuel prices, etc.) impact investment decisions?

NREL | 8



How Does EMIS Work?




.

ElectriCity Ma rketS al’ld Whoiesaie Electricity Market Clearing Resource Adequacv Model
A e nt Levei Investment Suite (EMIS) p - P §
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Capacity Expansion Model (CEM) \ ) Markets h _ ‘
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rl C e re I C I O n Retirement Decisions \. J \ J
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A — .
) ) Capacity Market L Single-Stage Operations
and Investment N P
( ™
Heterogenous, Profit- Renewable Energy Outages (PRAS)
Seeking Investor Agent X, Market Prices, Certificates (REC) / Clean N -
Scenario y ACCEptEd BidS, Energy Market
Cleared Capacities L )
NS —

e Each investor agent uses a capacity expansion model (CEM) for predicting long-term
wholesale electricity market prices (dual variables) and resource utilization.

e Each investor’s CEM model considers their beliefs about the future (e.g., load
growth, etc.) and is applied across multiple scenarios to capture uncertainty.

* Investment and retirement decisions are made based on expected utility, which is
calculated from the prices, predicted resource utilization, financing parameters, and
risk profiles across the scenarios.
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EMIS Currently Includes Four Stylized Investor Agents

Capital Cost
Investment P Perceived Risk

Multiplier
Technology P Riskiness (impacts Preference (parameter in

increasing capital
Preference ( cosf) e discount rate) expected utility)

Wind, PV, High High Very Risk Averse
Battery (1.143) (2.0%) (1.0e-5)
Gas CC, Mid Mid Very Risk Averse
Gas CT, RE-CT (1.105) (1.0%) (1.0e-5)
Mid Low Risk Averse
Wind, PV
C&l PP " (1.105) (0.5%) (1.0e-6)
Gas CC
e ’ Low None Risk Averse
Gas CT, RE-CT, Wind, PV,
Large Utility as in (1.085) (0.0%) (1.06-6)
Battery

IPP: Independent Power Producer; C&I: Commercial and Industrial; PV: Photovoltaic;
CC: Combined Cycle turbine; CT: Combustion Turbine; RE-CT: Renewable Energy CT; WACC: Weighted Average Cost of Capital; p.a: per annum
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EMIS Tracks Multiple Project Phases for Investment
and Retirement

A
| |
A Lifetime
Interconnection Construction Project
Queue Time Time Lifetime

- *Not drawn to scale
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* Each market is cleared based on full set of agents’ submitted bids.

* The set of market products and/or operational structures is customizable:

Forward capacity market

Operating reserves (e.g., reg up, reg down, flex up, flex down, primary,

synchronous) with various scarcity pricing structures (e.g., single value, operating
reserve demand curve [ORDC], etc.) and eligibility rules
Renewable/clean energy markets

Multi-day markets

Other
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Recent Market Design Updates Have Strengthened

the Linkage with RA

ORDCs are one example:

e Sequential Monte Carlo (SMC): RA-informed approach that calculates generator
and storage resource unavailability profiles accounting for chronology factors

* Convolution: Original method that does not account for chronology

5000

Convolution

. 4000
; — SMC
Convolution tends to under-

= 3000 | valuethe potential of
storage in reducing

2000 probabilities of reserve
shortfall, resulting in higher

1000 scarcity probabilities and
ORDC prices. —_— _|_|—.
0

0 500 1000 1500
Reserve Quantity (MW) NREL | 14
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ElectriCity Ma rketS al’ld Wholesale Electri(;ity Market Clearing Resource Adequacy Model
RA C h e C k a n d Investment Suite (EMIS) p § P N

Energy and Ancillary Services Single- or Multi-Stage
Operations

Capacity Expansion Model (CEM) ) Markets h _ ‘
F e e d b a C k (Max. social welfare) Generator Build/ (Sienna PCM) $Sienna (Sienna PCM) sslenna
Retirement Decisions \. J \ J
) — ( )
) Capacity Market Single-Stage Operations

B Market Bids S ) with Monte Carlo
( ™
Heterogenous, Profit- Renewable Energy Outages (PRAS)
Seeking Investor Agent x, Market Prices, Certificates (REC) / Clean \ J
Scenario y Accepted Bids, Energy Market )
Cleared Capacities L )

e RA s assessed at each investment interval and can also be feed back into the market
design(s)
e So far, we have focused on RA-adjusted capacity markets and ORDCs

 Many different RA model configurations are possible

See past Powered By webinars for more on
PRAS (September 2024) and Sienna (June 2024)!
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EMIS Use Cases




Currently Applied to Two Stylized, Realistic Test

Systems
RTS-GMLC ERCOT-like test system
* 3 zones based loosely on portions of 8 zones
the SW U.S. (CA, NV, AZ) * [nitial system peak load ~76 GW

* Initial system peak load ~8 GW

https://github.com/GridMod/RTS-GMLC https://dx.doi.org/10.2139/ssrn.4896921



https://github.com/GridMod/RTS-GMLC
https://dx.doi.org/10.2139/ssrn.4896921

Published EMIS Analyses

* Impacts of investor heterogeneity,

uncertainty, risk aversion, etc.
PLANNING AND

. OPERATIONS

* Different wholesale market structures ww—— B IN ELECTRICITY
. —— MARKETS

and prOd ucts: _f,g}j, Lt B A | N DER SYSTEM

— Energy-only el kel  TRANSFORMATION
W SR The interaction of wholesale electricity market stry Key Findings
. e Applied  with decarbonization policy goals: A complexity co o
— Capacity market ' ] ey et e

— Clean Energy Certificates bl
— Operating Reserve Demand

Curves (ORDCs)
— Inertia/FFR

— Eligibility rules for operating B

. ARFIELE HNED el : nd o, i P ttps://publications.an

reserve§ and Capacity m_a.rkets == : = ——— - ot R T |.go[z//an;|)pubs/2024/08
(e.g., Minimum Offer Pricing Rule = : : T [190452.pdf

[MOPRY])

— RA-informed ORDCs and capacity

https://doi.org/10.1016/j.ape
nergy.2024.122774

e i https://\NTww.sciencedirect.com/scie
ma rket d eéman d CUrVEs Bt oy S b 1 2 25, et 5 nce/article/pii/S0306261923003161

— Multi-day markets

https://www.sciencedirect.com/scien
ce/article/pii/S0306261921012198
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https://doi.org/10.1016/j.apenergy.2024.122774
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Explore Impacts of Investor Heterogeneity

Applied Energy 306 (2022) 117908
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Modeling investment decisions from heterogeneous firms under imperfect
information and risk in wholesale electricity markets
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GRAPHICAL ABSTRACT

ABSTRACT

Compared to homogenous agents, heterogeneous agents
T S e T T build different quantities of new capacity (1) at the

ich models the evolution of the electricity generation mix under various market

structures while explicitly capturing the aforementioned investment factors and imperfect information. EMIS-
AS advances the state-of-the-art of genera nr\r_'x'pansm p]a.n.mgand agent-based madeling by incorporating

R aggregate technology level, and (2) between agents, with
7 the Large Utility taking the majority share due to
fﬂ”':;;,‘fu;“&“fn?iffﬂﬂi'ﬂifm"; inet ot e == favo rable ﬁnanCIHg termS.

E-mail address: MuhammadBashar Anwar@nrel.gov (M.B. Anwar).

firm-level recourse actions with severe

https://doi.org/10.1016/j.apenergy. 2021.117908

ch: ived 10 F bnmy 2021; Received in revised form 13 July 2021; Accepted 16 September 2021
ailable online 8 October 2021

oznszslqm 2021 Elsevier Ld. All rights reserved.
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Explore Different Products:

Stylized Inertia/Fast Frequency Response

Applied Energy 339 (2023) 120952
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The interaction of wholesale electricity market structures under futures £

with decarbonization policy goals: A complexity conundrum

Bethany Frew ™ , Muhammad Bashar Anwar °, Sourabh Dalvi®, Adria Brooks b

* National Renewable Energy Luboratory, Colden, C0) 80401, USA

HIGHLIGHTS

« We used EMIS-AS model to explore various market structures and clean energy targets.
» Energy-only markets can achieve same clean energy goals as capacity markets.

« ORDC scarcity pricing exhibits substitutional relationship with capacity markets.

« Even one well-designed market mechanism can achieve desired clean energy targets.

« Capacity/reserve eligibility rules for one technology or product can impact others.

ARTICLE INFO

ABSTRACT

Keywords:

Competitive whelesale electricity markets
Market design

Decarbonization

Caparity expansion modeling

‘Production cost modeling

Renewable energy

Competitive wholesale electricity markets can help facilitate energy system decarbonization by incentivizing

in clean energy that meet evolving system needs. We explore market structure impacts
on generator operations and by rish 3 investor firms using the Electricity
Markets and Suite - Agent-based Simulation (EMIS-AS) model. We apply clean energy targets of
45%-100% by 2035 considering energy, ancillary services, capacity, and clean energy credit products and
pricing and eligibility rules. Results highlight a complexity conundrum, whereby finding the “right” market
design to achieve ization goals and avoid can be a highly-nuanced, non-in-
cremental challenge. Carefully designed energy-only markets can achieve the same clean energy targets as ca-
pacity market structures but with different revenue and profitability outcomes. Operating reserve demand curve-
based scarcity pricing can substitute capacity markets for similar deployment outcomes. Carbon pricing alone is

mast effective at achieving decarbonization levels at low clean energy targets, and clean energy eredit markets
and carbon pricing are substitutionary at high clean energy targets. Restricting technalogy participation in ca-

pacity and operating reserve markets can impact and even for technolo-
gies. Adding an inertia product with fast frequency response yields insufficient provision at high clean energy
targets, but work is needed to frequency requi and ili

1. Introduction

services across numerous timescales ro support system reliability as the
system evolves.

The growing momentum behind power system decarbonization
effortsprompted by both policy goals and declining costs of clean
energy technologies—has led to numerous studies on the technical

challenges of such a iransformation (e.g., [1-3]). In areas with
competitive wholesale electricity markets, the market design structures
and rules present additional chall for ing efficient i

and operations of resources that can supply the necessary set of grid

* Corresponding authar.

E-mail address: Bethany Frew@nrel. zov (B. Frew).

httpe://doi.org/10.1016/j.apenergy. 2023.120952

In the United States, wholesale electricity markets managed by in-
dependent system operators (ISOs) or regional transmission operators
(RTOs) serve roughly two-thirds of the load [4). The market design
varies by each 1S0/RTO. While which designs and products will be most
effective in supporting the transition to a decarbonized power system is
unclear, the general consensus is market design modifications are
needed in every existing ISO/RTO area, both for the existing system and

Received 14 December 2021; Received in revised form 30 November 2022; Accepted 5 March 2023

Available online 22 March 2023
0306-2619/® 2023 Elsevier Lid. All rights reserved.

https://www.sciencedirect.com/science/article/pii/S0306261923003161

At high clean energy targets, adding an inertia-like product can
favor technologies that support both the inertia requirement
and clean energy target but also result in potentially
redundant resource utilization.

W Energy = CEC M Inertia ™ Synchronous ™ Primary

Flex_Down ®Flex_Up " Reg _Down ® Reg Up ™ Capacity

E
-
Inertia (With Inertia Product) -
_ oRoc_Carbon (Mol -
(4]
=
Inertia (With Inertia Product) .

0 25 50 75 100 125 150 175 200 225 250 275
Market Revenues ($/kW-yr)

CET = clean energy target (Low = 45% by 2035, High = 100% by 2035)
NREL | 20
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Evaluate Investor-Level Profit

Applied Energy 339 (2023) 120952

Without a capacity market (i.e., energy-only market):
* Firms that invest in thermal units (IPP and Large Utility)

Contents lists available at ScienceDirect

Applied Energy

I- = l joumnal homepage: www.elsevier.com/locate/apenerg H H H H H
SRR o experience reductions in profitability
m
The interaction of wholesale electricity market structures under futures £ °

New Entrant and C&I IPP (who only build clean energy)
experience slight improvements in profitability, as they can
more than recover lost capacity market revenues through
higher clean energy market and energy market revenues

with decarbonization policy goals: A complexity conundrum

Bethany Frew ™ , Muhammad Bashar Anwar *, Sourabh Dalvi®, Adria Brooks"

* National Renewable Energy Laboratory, Golden, CO 80401, USA
* Department of Energy, Washingion, D.C., USA

HIGHLIGHTS

« We used EMIS-AS model to explore various market structures and clean energy targets.
 Energy-only markets can achieve same clean energy goals as capacity markets.

« ORDC scarcity pricing exhibits substitutional relationship with capacity markets.

« Even one well-designed market mechanism can achieve desired clean energy targets.

« Capacity/reserve eligibility rules for one technology or product can impact others.

ARTICLE INFO ABSTRACT

W New Entrant ®[PP mC&lIPP Large Utility

Keywords: Competitive wholesale electricity markets can help facilitate energy system decarbonization by incentivizing
Cnmrﬂdﬂ\: whalesale electricity markers investments in clean energy technologies that meet evolving system needs. We explore market structure impacts
Market design on generator fons and by risk investor firms using the Electricity : i
- ~— —>
Decubongstion o penerate e e St (oo ol e apply oo s oo of Decrease from Base Scenario Increase from Base Scenario

Caparity expansion modeling
Production cost modeling
Renewable energy

45%-100% by 2035 considering energy, ancillary services, capacity, and clean energy credit products and
pricing and eligibility rules. Results highlight a complexity conundrum, whereby finding the “right” market
design to achieve decarbonization goals and avoid can be a highly-nuanced, non-in-
cremental challenge. Carefully designed energy-only markets can achieve the same clean energy targets as ca-
pacity market structures but with different revenue and profitability outcomes. Operating reserve demand curve-
based scarcity pricing can substitute capacity markets for similar deployment outcomes. Carbon pricing alone is
most effective at achieving decarbonization levels at low clean energy targets, and clean energy credit markets
and carbon pricing are substitutionary at high clean energy targets. Restricting technology participation in ca-
pacity and operating reserve markets can impact deployment and operations, even for nanrestricted technolo-
gies. Adding an inertia product with fast frequency response yields insufficient provision at high clean energy
targets, but work is needed to frequency requi and il

No_Cap, Low CET

1. Introduction

The growing momentum behind power system decarbonization
efforts —prompted by both policy goals and declining costs of clean
energy technologies—has led to numerous studies on the technical
challenges of such a transformation (e, [1-3]). In areas with
competitive wholesale electricity markets, the market design structures
and rules present additional chall for ensuring efficient
and operations of resources that can supply the necessary set of grid

* Corresponding author.
E-mail address: Bethany ¥

hitps://doi.org/10.1016/j.apene

services across numerous timescales ro support system reliability as the
system evolves.

In the United States, wholesale electricity markets managed by in-
dependent system operators (ISOs) or regional transmission operators
(RTOs) serve roughly two-thirds of the load [4]. The market design
varies by each ISO/RTO. While which designs and products will be most
effective in supporting the transition to a decarbonized power system is
unclear, the general consensus is market design modifications are
needed in every existing ISO/RTO area, both for the existing system and

Received 14 December 2021; Received in revised form 30 November 2022; Accepted 5 March 2023

Available online 22 March 2023
0306-2619/8 2023 Elsevier Ltd. All rights reserved.
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No_Cap, Mid CET

No_Cap, High CET

-800 -600 -400 -200 0 200
Difference in Total Profitability (Million $) compared to the Base Scenario

CET = clean energy target (Low = 45% by 2035, Mid = 75% by 2035, High = 100% by 2035) NReL | 21
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Explore Impact of Eligibility Rules

perating Reserves

Applied Energy 339 (2023) 120952
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| wemem - Market rules that restrict participation of clean energy
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with decarbonization policy goals: A complexity conundrum

Bethany Frew ™ , Muhammad Bashar Anwar”, Sourabh Dalvi®, Adria Brooks ”
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significant price (and revenue) differences.

HIGHLIGHTS:

* We used EMIS-AS model to explore various market structures and clean energy targets.
» Energy-only markets can achieve same clean energy goals as capacity markets.

# ORDC scarcity pricing exhibits substitutional relationship with caparity markets.

» Even one well-designed market mechanism can achieve desired clean energy targets. . Energy
» Capacity/reserve eligibility rules for one technology or product can impact others.

CEC = Synchronous ™ Primary * Flex_Down ®Flex_Up = Reg_Down ®mReg_Up = Capacity

ARTICLE INFO ABSTRACT
Keywonds: Competitive wholesale electricity markets can help facilitate energy system decarbonization by incentivizing .
Competitive wholesale electricity markets investments in clean energy technologies that meet evolving system needs. We explore market structure impacts OR Dc ca rbon Hl h CE[
Mrket desin : i b imvestor firms using the Electrici - !
il on generator op y 5 ty
Decarbor Markets and Suite — based Simulation (EMIS-AS) model. We apply clean energy targets of

Capacity expansion modeling
Production rost modeling
Renewable energy

45%-100% by 2035 cuns]dmng energy, ancillary services, capacity, and clean energy credit products and
pricing and eligibility rules. Results highlight a complexity conundrum, whereby finding the “right” market
design to achieve ization goals and avoid uni can be a highly-nuanced, non-in-
cremental challenge. Carefully designed energy-only markets can achieve the same clean energy targets as ca-
pacity market structures but with different revenue and profitbility outcomes. Operating reserve demand curve-
based scarcity pricing can substitute capacity markets for similar deployment outcomes. Carbon pricing alone is
most effective at achieving decarbonization levels at low clean energy targets, and dean energy credit markets
and carbon pricing are substitutionary at high clean energy targets. Restricting technology participation in ca-

No_VRE_Reserves, High CET
(VRE Ineligible for Reserves)

pacity and operating reserve markets can impact and even for technolo-
gies. Adding an inertia product with fast frequency response yields insufficient provision at high clean energy
targets, but work is needed to frequency requi and

No_VRE_Bat Reserves, High CET

1. Introduction

The growing momentum behind power system decarbonization
effarts—prompted by both policy goals and declining casts of clean
energy technologies—has led to numerous studies on the technical
challenges of such a transformation (e.g.. [1-3]). In areas with
competitive wholesale electricity markets, the market design structures
and rules present additional challenges for ensuring efficient investment
and operations of resources that can supply the necessary set of grid

v (B. Frew).

3120952

hitps:///doi.org/10.1016/j.apens
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services across numerous timescales to support system reliability as the - - e
stem evalves. (VRE & Batteries Ineligible for Reserves)
In the United States, wholesale electricity markets managed by in-
dependent system operators (ISOs) or regional transmission operators
(RTOs) serve roughly two-thirds of the load [4]. The marker design
varies by each ISO/RTO. While which designs and products will be most
effective in supporting the transition to a decarbonized power system is 0 1 00 2 00
unclear, the general consensus is market design modifications are
needed in every existing ISO/RTO area, both for the existing system and

VRE = variable renewable energy; CET = clean energy target (High = 100% by 2035)
https://www.sciencedirect.com/science/article/pii/50306261923003161
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Compare Market Designs Across Different Clean

Energy Targets

Applied Energy 350 (2024) 122774
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Can wholesale electricity markets achieve resource adequacy and high
clean energy generation targets in the presence of self-interested actors?

Muhammad Bashar Anwar , Nongchao Guo, Yinong Sun, Bethany Frew

Norionai Renewable Energy Laboraiory, Galden, CO 50401, USA

HIGHLIGHTS

« Both ORI and capacity markets can achieve resource adequacy [argets.

« Capacity maskers ean reduce wind and solar buildour due 1o suppressed energy prices.
« Static eapacity demand eurves achieve relisbility targets with stable price signals.

» ORDCs inerease generation commitment but ar the expense of higher system eosts

« Achieving high clean energy targets requires cost-competitive flexible technologies.

ARTICLEINFO ABSTRACT

Wholesale electricity markets are intended to incentivize system generation investments and operations out

Keywards:
Competitive wholcsale: clectricity masket comes that meet evolving system needs. In this work, we evaluate the effectiveness of wholesale market struc-

design tures, rules and palicies in achieving system resouree adequaey (RA) and elean energy targets in the presence of
mm”“ sedf-interested generation investors using the Electricity Markets and Investment Suite Agent-based Simulation
Capaciey —_— (EMIS-AS) model. Results highlight that both eapacity markets and opersting reserve demand eurves (ORDCS)

can help achieve a reliable system but with different RA timelines and disteiby of generati
technologies. Structures with capacity markets tend 1o favor more capital-intensive peaking technologies while
reduring wind and solar build-ours due to suppressed energy and elean energy market prices, pasticularly in the
absence of strong elean energy targets. Conversely, ORDCs improve the commitment of available generation
uniss, bur this comes at the expense of higher system costs and renewable generation curtailment. We also find
that well-calibeated statle capacity demand curves ean yield smilar reliability and total cost eompared to ea
pacity market demand curves informed dynamically by resource adequacy while also yielding stable annual
capacity prices, Different approaches 1o formulating ORDC curves can also yield key wade-offs, namely that a
maore efficient treatment of storage chronology results in lower ORDC eurves and prices, yielding less investment
and cost but at the expense of reliability. Finally, the effectiveness of wholesale electricity markets in practically
achieving very high clean energy generation targers highly depends on the cost-competiriveness of elean energy
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outs with lower reliability levels

Can wholesale electricity markets achieve resource adequacy and high
clean energy generation targets in the presence of self-interested actors?
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HIGHLIGHTS

» Both ORDCs and capacity markets can achieve respurce adequacy targets.

« Capacity markets can reduce wind and solar buildout due 1o suppressed energy prices.
« Static capacity demand curves achieve reliability targets with stable price signals.

» ORDCs increase generation commitment bt at the expense of higher system ecsts.

« Achieving high clean energy targets requires cost-competitive flexible technologies.
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Compare Different RA Mechanisms:

Operational Impacts

Compared to a capacity market alone, an ORDC alone may
more effectively incentivize capacity availability by
efficiently committing resources in the day-ahead market
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Availability is based on the real-time capacity from day-ahead commitment outcomes of all generation resources excluding
hydropower, wind, solar, and battery, and it includes hours when locational marginal prices are more than $1,000/MWh
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Evaluate the Impact of Different Weather Years on

RA and Market Design
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Current Work: Multi-Day Market

Multi-day (MD) Simulation (3-day out)

Commitment of
long start-up units,
Storage targets etc.
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Stay tuned for future results!
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Settle MD dispatches at
MD prices

Settle differences between MD
and DA dispatches at DA prices

Settle differences between DA
and RT dispatches at RT prices
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How To Access EMIS




EMIS Is Open Source!

Only the application to the modified

RTS-GMLC dataset (and not ERCOT) is
currently available. We recommend O i
starting with the “sa_analysis” branch,
which corresponds to the Anwar et al.
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